Advertisement

关于牛顿法的并行优化算法的研究论文.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了针对牛顿法进行改进与创新的并行优化算法,旨在提高计算效率和解决大规模问题的能力。通过理论分析及实验验证展示了该方法的有效性与优越性能。 针对非线性数值优化问题,本段落提出了一种在分布式环境下基于牛顿法的并行算法。通过引入松弛变量将不等式约束转化为等式约束,并利用广义拉格朗日乘子方法将带有约束的优化问题转换成无约束形式的问题进行求解。为了实现这些子优化问题的同时计算,我们对Newton迭代中的Hessian矩阵进行了适当的分割处理,并使用简单迭代法来解决Newton法中出现的线性方程组。从理论上对该算法进行了收敛性的分析和探讨。在HP rx2600集群上进行的实际数值实验结果表明,该并行方法能够实现超过90%的效率提升。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本文探讨了针对牛顿法进行改进与创新的并行优化算法,旨在提高计算效率和解决大规模问题的能力。通过理论分析及实验验证展示了该方法的有效性与优越性能。 针对非线性数值优化问题,本段落提出了一种在分布式环境下基于牛顿法的并行算法。通过引入松弛变量将不等式约束转化为等式约束,并利用广义拉格朗日乘子方法将带有约束的优化问题转换成无约束形式的问题进行求解。为了实现这些子优化问题的同时计算,我们对Newton迭代中的Hessian矩阵进行了适当的分割处理,并使用简单迭代法来解决Newton法中出现的线性方程组。从理论上对该算法进行了收敛性的分析和探讨。在HP rx2600集群上进行的实际数值实验结果表明,该并行方法能够实现超过90%的效率提升。
  • 优质
    简介:牛顿法是一种高效的最优化算法,通过利用目标函数的二阶导数信息来加速收敛过程,在非线性问题求解中有着广泛应用。 利用牛顿法求解问题的最优化解。
  • Spark环境下Eclat.pdf
    优质
    该研究论文深入探讨了在Spark分布式计算框架下优化和实现Eclat关联规则挖掘算法的方法,着重分析了并行化技术对提升大规模数据集处理效率的影响。 通过对Spark大数据平台及Eclat算法的深入研究,提出了一种基于Spark的Eclat改进版算法(即SPEclat)。为解决串行算法在处理大规模数据集中的不足,该方法进行了多方面的优化:为了减少候选项集支持度计数时产生的损耗,调整了数据存储方式;将数据按前缀分组,并分配到不同的计算节点上进行并行化计算,从而压缩搜索空间。最终利用Spark云计算平台的优势实现了算法的高效运行。实验结果显示,在处理海量数据集的情况下,该算法能够有效提高性能,并且在面对大规模的数据量增长时具有良好的可扩展性。
  • 模糊蚂蚁聚类.pdf
    优质
    本文探讨了并行模糊蚂蚁聚类算法的应用与优化,通过模拟蚂蚁觅食行为中的信息素沉积和挥发机制,提出了一种高效的集群智能数据分类方法。研究旨在提高大数据环境下的聚类效率与准确性。 本段落提出了一种基于并行模糊蚂蚁的数据聚类算法。该算法利用了蚂蚁群体优化原理以及Mamdani模糊推理系统中的IF-THEN规则来寻找数据的最优分类方式。
  • 迭代.doc
    优质
    本文档是一篇探讨牛顿迭代法应用与原理的学术论文,深入分析了该方法在求解非线性方程中的高效性和广泛适用性。 牛顿迭代法是一种数值分析方法,用于寻找函数零点的近似解。该方法通过不断地使用切线来逼近函数曲线上的根,并且收敛速度通常很快,在实际应用中非常有效。 如果原文里没有包含任何联系信息或网站链接,则重写后的段落如下: 牛顿迭代法论文主要探讨了牛顿迭代算法在求解方程近似根中的应用。该方法基于函数的导数,通过一系列递推公式逐步逼近目标函数的零点位置,具有很高的精确度和较快的收敛速度,在科学计算与工程问题解决中有着广泛的应用价值。 此段落未提及任何联系信息或网站链接。
  • ARM+GPU环境下机载SAR成像-
    优质
    本文探讨了在ARM+GPU硬件架构下,针对机载合成孔径雷达(SAR)成像算法进行并行化优化的研究,旨在提高计算效率和图像质量。 机载合成孔径雷达(SAR)技术在无人机遥感领域扮演着关键角色,尤其适用于多云雾山丘地区。SAR系统凭借其高分辨率、高机动性和较低的成本等特点,成为重要的信息采集手段。然而,在处理图像时会面临计算资源有限和分析过程耗时的挑战,这限制了无人机实时响应外界环境变化的能力。 为解决这一问题,研究者提出了基于ARM和GPU的并行优化策略。ARM架构因其低功耗、高性能特性在移动设备和嵌入式系统中广泛应用;而GPU则以其强大的并行处理能力,在图形处理与科学计算领域占据重要地位。结合两者的优势,可以在资源受限的机载平台上提升SAR成像的计算性能。 该策略主要关注以下三个方面: 1. 简化计算:通过算法优化减少不必要的步骤以提高效率。 2. 优化访存:合理安排数据存储和访问方式,降低延迟并提高内存利用效率。 3. 减少条件分支:简化程序中的分支判断,避免因预测失败导致的性能损失。 研究者将此策略实现在ARM Mali-T860 GPU架构上,并使用OpenCL平台进行编程。通过这种方式,在多种硬件平台上实现跨平台的应用部署成为可能。实验结果显示,该并行优化策略显著提升了机载SAR成像算法的计算性能,使无人机能够快速响应环境变化。 具体而言,多视处理、旋转放缩和图像量化等算法分别实现了17倍至62倍、48倍至74倍以及31倍至33倍的性能提升。这些显著提高使得无人机能实时处理来自SAR的大数据量信息,并为未来在嵌入式设备中应用提供了广阔前景。 研究还提到,与基于CPU的传统架构相比,采用ARM+GPU方案可有效缓解计算瓶颈问题并大幅缩短算法运行时间。通过这一改进措施,机载SAR成像技术的性能得到了显著提升,从而开拓了无人机遥感领域的新的可能性。
  • Spark环境下改进BP.pdf
    优质
    本文探讨了在Apache Spark环境下对并行反向传播(BP)算法进行优化的方法,旨在提升大规模神经网络训练效率和性能。 基于Spark的改进并行BP算法由刘永和方维提出。BP(Back Propagation)神经网络是一种通过误差反向传播进行训练的多层前馈网络,是目前最受欢迎的神经网络模型之一。传统BP算法的一个主要问题是收敛速度较慢。
  • BP神经网络蚁群.pdf
    优质
    本文探讨了利用蚁群算法对BP(反向传播)神经网络进行优化的研究。通过改进BP神经网络的学习效率和泛化能力,旨在解决传统BP算法中存在的局部极小值等问题。 本段落研究了一种基于蚁群算法优化BP神经网络的方法。BP神经网络是人工神经网络中最广泛应用的一种多层前馈网络类型。然而,该方法存在容易陷入局部最优解的问题,并且隐层节点数通常需要通过经验试凑来确定,这限制了其性能的发挥和应用范围。因此,本段落提出了一种利用蚁群算法优化BP神经网络结构的方法,以期解决上述问题并提高网络的学习效率与准确性。
  • 与阻尼MATLAB实现方
    优质
    本文探讨了牛顿法和阻尼牛顿法在求解非线性方程组中的应用,并通过MATLAB编程实现了这两种算法的优化,旨在提高数值计算效率。 本段落介绍了牛顿法和阻尼牛顿法在MATLAB中的实现方法,代码由本人编写。如需使用,请自行下载相关文件,并运行run.m文件。欢迎各位讨论交流。
  • 遗传与粒子群混合方.pdf
    优质
    本研究论文探讨了将遗传算法和粒子群优化技术相结合的方法,旨在提高复杂问题求解效率和性能。通过实验证明该混合策略的有效性和优越性。 本段落从进化计算的框架出发,比较分析了遗传算法与粒子群优化算法在个体、特征及操作上的异同,并结合两者的优势,构建了一种基于实数编码的混合算法。作者为时小虎和韩世迁。