Advertisement

555延时开关电路原理图及PCB

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供555定时器构成的延时开关电路原理图和PCB设计文件,适用于电子爱好者学习与项目制作。 使用555芯片制作的延时开关旨在用于节能。文件包含有关555芯片使用的连接电路、原理图与PCB设计,并提供了可调节延迟时间的硬件参数设置方法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 555PCB
    优质
    本资源提供555定时器构成的延时开关电路原理图和PCB设计文件,适用于电子爱好者学习与项目制作。 使用555芯片制作的延时开关旨在用于节能。文件包含有关555芯片使用的连接电路、原理图与PCB设计,并提供了可调节延迟时间的硬件参数设置方法。
  • 触摸工作
    优质
    本资源提供详细的延时开关触摸工作原理及电路图解析,帮助用户理解其内部构造与运作机制,适用于电子爱好者和工程师学习参考。 ### 触摸延时开关的工作原理及电路设计 #### 一、引言 触摸延时开关作为一种便捷且节能的电器开关设备,在家庭、公共场所等环境中得到了广泛应用。它结合了触摸传感技术和延时控制机制,实现了人机交互的智能化。本段落旨在深入探讨触摸延时开关的工作原理,并通过具体的电路图来解析其内部结构和技术细节。 #### 二、触摸延时开关基本原理 触摸延时开关主要包括两大部分:传感器部分和电子控制部分。其中,传感器负责检测用户的触摸动作,而电子控制部分则根据传感器的输入信号进行逻辑处理,控制负载(通常是灯具)的通断状态。 **1. 传感器部分** - **金属感应片**:通常位于开关面板表面,作为触摸感应区。当人体接触该区域时,会形成一个微弱的电流路径,从而触发后续电路动作。 **2. 电子控制部分** - **信号放大与处理**:传感器接收到的信号较弱,需要通过放大器等组件进行增强处理。 - **延时电路**:通过电容充放电实现延时功能。触摸后,电容开始充电并保持一定的电压水平,维持负载工作;随着时间推移,电容放电完毕,电压降至阈值以下,触发负载关闭。 #### 三、具体电路分析 接下来我们将详细分析触摸延时开关的具体电路结构及其工作过程。 **1. 触摸式延时开关电路结构** - **主回路**:由二极管VD1~VD4和场效应管VS组成,用于控制负载的通断。 - **控制回路**: - **集成电路IC**:双D触发器,仅使用其中一个D触发器构成单稳态电路。 - **限流电阻R5**:用于限制流向IC的电流,保护电路。 - **稳压二极管VD5**:确保IC获得稳定的电压供电。 - **滤波电容C2**:过滤电源中的杂波,提供更加纯净的直流电。 **2. 工作过程** - **待机状态**:平时,VS处于关断状态,负载(如灯泡)不工作。此时,通过VD1~VD4将交流电转换为脉动直流电,并通过R5、VD5和C2等元件稳定供电至IC。 - **触发状态**:当人体触摸金属感应片时,通过R1和R2分压,使得单稳态电路发生翻转,IC的1脚输出高电平,进而触发VS导通,负载点亮。 - **延时过程**:1脚输出的高电平通过R4加载至VS的门极,同时经由R3向C1充电。随着C1的充电,4脚电平逐渐升高直至翻回稳态,此时1脚输出低电平,VS关断,负载熄灭。 **3. 按钮触摸开关** - **电路结构**:除了包含上述触摸式延时开关的基本组成部分外,还额外加入了一个按钮K1、限流电阻R3以及电容C1。 - **工作过程**: - **开启状态**:按下按钮K1时,电流通过R3限流后为C1充电,同时V1导通,负载点亮。 - **延时过程**:松手后,K1复位断开,C1开始放电,为V1的控制极继续提供触发电压,使负载继续保持点亮状态。当C1两端电压降至0.7V以下时,V1失去有效触发电压,负载熄灭。 #### 四、总结 触摸延时开关通过巧妙地结合传感器技术和电子控制技术,实现了自动化的延时控制功能。其核心在于利用电容的充放电特性来控制负载的通断,从而达到节能的目的。通过对上述电路的分析,我们可以更深入地理解触摸延时开关的工作原理及其实际应用价值。
  • PCB(SCH)
    优质
    本资料包含开关电源的PCB布局和SCH原理图,详尽展示了其内部结构与工作原理,适用于电子工程师和技术爱好者深入学习与研究。 原理图和PCB图可以使用PowerPCB5.0和PowerLogic5.0打开,供参考使用。
  • 三控自熄详解
    优质
    本资料深入解析了三控延时自熄开关的工作原理及电路设计,详细介绍了其内部结构和控制逻辑。适合电工和技术爱好者参考学习。 本段落介绍了一种声光触摸三控延时自熄开关的电路原理图。该电路包括电源电路、信号检测转换电路、延时电路以及控制电路四部分组成。
  • 555555
    优质
    本资源详细介绍并展示了基于555定时器的经典电路图,适合电子爱好者和工程师学习参考。通过实例解析其工作原理与应用技巧。 555定时器是一种集成电路,在电子电路设计中有广泛应用。你提到的“555定时器”重复多次了,我将其简化为:“关于555定时器的应用与特性进行了讨论。”如果需要更具体的内容,请提供更多的信息或指定你需要了解的具体方面。
  • 基于555的单稳态
    优质
    本项目设计并实现了一种基于555定时器的单稳态延时电路。该电路利用555芯片的经典应用,可提供稳定、可靠的延时功能,适用于多种电子控制系统中。 555长延时电路图(一):该延时电路由一个555振荡器与一个基于555的单稳态触发器构成。具体来说,IC1、R1、RP、R2、D1和C1共同构成了无稳态多谐振荡器,其工作频率f可计算为1.44/(R1+R2+RP)C1。根据图示参数,该电路的振荡频率大约是600赫兹左右。 IC1产生的方波信号通过D3和R3被送至IC2的6、7脚。而由IC2配合电阻R4、电容C5以及电容C3组成的单稳态延时电路负责后续的时间控制功能。在刚通电的时候,由于C5连接到了触发端(即IC2的第2脚)与地之间,导致IC2的输出端(第3脚)呈现高电平状态,使得继电器K吸合,并且通过触点K1-1维持给IC1和IC2供电;同时通过另一组触点K2-2接通负载电路。此时,在7脚连接的内部放电管处于截止状态,因此C3开始充电。 由于D3的存在,当IC1输出方波信号中的正脉冲到来时会对C3进行充电操作,并且这种充电过程是阶梯式的;同时因为二极管的作用,C3上的电压不会向IC1方向释放。一旦C3的电压上升至2/3Vdd阈值电平之上,则触发555复位机制,使得第3脚输出低电平信号,继电器K因此断开触点K1和K2;此时负载电路失去供电而停止工作。 对于第二个延时电路图(二),这是一个基于单稳态模式的555定时器设计。不过与常见的结构不同的是,在这个特殊应用中,IC2的第5脚通过一个二极管D1直接连接到了电源Vdd上;该引脚在正常情况下是用于设定内部参考电压点的位置,但在这里被重新配置以增强电路的功能灵活性和稳定性。
  • 楼道触摸设计
    优质
    本项目介绍了一种智能楼道触摸延时开关的设计与实现,包括其工作原理、硬件构成和详细的电路图绘制方法。 设计一个楼道触摸延时开关。基本要求如下:1. 当人用手触摸开关时,照明灯点亮,并持续一段时间后自动熄灭;2. 开关的延时时间约1分钟左右;3. 采用Multisim软件进行仿真,验证和完善设计方案;4. 按照课程设计报告的要求完成并提交激光打印版和电子文档。主要参考资料包括:本次楼道延时开关的设计应用了桥式整流电路、滤波稳压电路及单稳态电路,并使用芯片TTP223N-BA6对触摸按键进行控制,同时还涉及继电器控制小灯的电路设计以及555定时器的基本功能。此外还利用了二极管和电容等基础知识,通过基础电路实现了触摸开关使小灯点亮并延时1分钟的设计要求。
  • 楼道触摸设计
    优质
    本项目介绍了一种智能楼道触摸延时开关的设计方案及其电路图,旨在通过触摸感应技术实现自动照明与节能。 设计一个楼道触摸延时开关是本次课程的主要任务。基本要求如下: 1. 当人用手触摸开关时,照明灯点亮,并在一段时间后自动熄灭。 2. 开关的延时时间约为一分钟左右。 3. 使用Multisim软件进行仿真,以验证和完善设计方案。 4. 按照规定完成课程设计报告并提交激光打印版本和电子文档。 本次楼道延时开关的设计主要应用了桥式整流电路、滤波稳压电路以及单稳态电路。具体而言,采用了TTP223N-BA6芯片来控制触摸按键,并使用继电器来管理小灯的点亮与熄灭过程。此外,还利用了555定时器的基本功能及二极管和电容等基础知识,成功实现了通过触摸开关使小灯点亮并延时一分钟的设计要求。
  • 简化版断与
    优质
    本设计提供一种简化的延时电路方案,专注于实现设备的自动关断和重新开启所需的时间延迟控制,适用于多种电子应用场景。 本段落简要介绍了两种简易延时电路:关断延时和开启延时。
  • ZVS零PCB源文件-方案
    优质
    本资源提供ZVS(零电压开关)电路的详细原理图和PCB设计源文件,适用于研究与开发需要高效低损耗电源转换应用的技术人员。 ZVS代表零电压开关(Zero Voltage Switch),指的是在开关管关断前其两端的电压已经降为0的状态。这样可以将开关损耗降到最低水平。我们常见的电磁炉以及LLC电源都是采用这种谐振方式,而普通的充电器等则使用的是硬开关技术,相比之下耗损更大一些。 ZVS能够实现高效率运作,但也有一个局限性——调节范围通常较小。比如在使用电磁炉时,当功率调至较大值以维持持续加热;然而若将功率调整到较低水平,则会出现断续加热的情况,这是因为此时系统无法保持谐振状态。与之相反的是传统的硬开关电源,在任何负载条件下(无论是空载还是满载)都能实现连续震荡。 ZVS逆变器电路图和PCB板示意图展示了其工作原理的具体细节。