Advertisement

摩擦纳米发电机研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该摩擦纳米发电技术的理论基础涵盖了摩擦纳米发电机的原理,并深入探讨了其相关的技术发展前沿。此外,还包括了摩擦纳米发电机的制造工艺以及性能评估,以及围绕该领域的相关文献索引,旨在为研究者提供全面的信息资源。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 装置.pdf
    优质
    《摩擦式纳米发电装置》探讨了一种利用摩擦生电原理设计的小型高效能源采集设备,旨在为物联网、可穿戴设备等提供持续电源解决方案。 摩擦纳米发电基的原理、摩擦纳米发电机技术、该领域的前沿发展、摩擦纳米发电机的制造与性能评估以及相关技术介绍等内容进行了探讨,并提供了文献索引供进一步研究参考。
  • 关于纤维的文献回顾
    优质
    本文献综述全面探讨了纤维摩擦纳米发电机的研究进展,涵盖其工作原理、制造方法及在可穿戴设备与能量收集等领域的应用前景。 摩擦纳米发电机(Triboelectric Nanogenerator, TENG)是一种新兴的能源转换装置,它利用物质间的摩擦电效应将机械能转化为电能。这种技术为微型电子设备提供了自供电的可能性,并特别适用于可穿戴设备、医疗植入物以及智能移动设备等对电源需求较高的应用领域。 TENG的工作原理主要基于两个关键过程:摩擦起电(Triboelectric charging)和电荷分离(Electrostatic induction)。当两种不同材料相互接触并分离时,由于它们的相对电位差异会产生电荷分离,并进而产生电流。这种机制使得TENG能够在各种环境条件下有效地收集能量,如人体运动、风力以及水波等机械刺激。 相关文献涵盖了从基础原理到实际应用的各种方面: - 文献A《Micropillar-Assisted Versatile Strategy for Highly Sensitive and Efficient Triboelectric Energy Generation under In-Plane Stimuli》(2019) 提到了微柱辅助策略,该技术能提升平面刺激下的摩擦电能量生成效率,并增强了TENG对细微机械刺激的敏感性。 - 文献B《A Sustainable and Flexible Microbrush-Faced Triboelectric Generator for Portable Wearable Applications》(2021) 展示了一种可持续且柔性的微刷面设计,这种设计提高了能源收集的实用性和持续性,并适用于便携式可穿戴应用领域。 - 文献C《Multiple-Frequency High-Output Triboelectric Nanogenerator Based on a Water Balloon for All-Weather Water Wave Energy Harvesting》(2020) 探讨了一种基于水球结构的设计,旨在全天候捕获水波能量,并为水上或水下设备提供电源。 - 文献D《Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization》(2021) 介绍了一种多功能同轴纤维设计,该技术结合了能源采集、存储和利用功能,展示了TENG在集成能源管理方面的潜力。 - 文献E《Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Real-Time Human-Interactive Sensing》(2018) 提到了一种核壳结构的纤维设计,能够可持续地收集生物力学能量,并实现实时的人体交互传感功能,在可穿戴传感器领域具有重要意义。 这些文献共同展示了摩擦纳米发电机领域的广泛研究和创新成果。从材料选择、结构优化到提升能源转换效率以及在不同应用场景中的实际应用前景等方面均有所涉及。随着技术的不断进步,TENG有望在未来成为解决微电子设备电源问题的重要手段之一。
  • matlabwork2020_时变系数与_
    优质
    MatlabWork2020: 时变摩擦系数与摩擦项目聚焦于利用MATLAB工具研究和模拟随时间变化的摩擦现象,探讨其在机械工程中的应用及其对系统性能的影响。 求解时变摩擦系数f的问题。
  • 赫兹接触模型的分析与
    优质
    本研究聚焦于赫兹接触理论下的摩擦问题,通过建立数学模型和实验验证,探讨了表面微观形貌对摩擦特性的影响机制。 Hertz接触理论由德国物理学家海因里希·鲁道夫·赫兹提出,主要研究弹性体在接触后应力分布、接触面积及接触力之间的关系,在机械工程领域尤其是轴承与齿轮等领域的应用十分广泛。 本段落探讨了将Hertz接触理论应用于旋转机械设备中定转子碰摩问题的研究。碰摩是指设备运行过程中因各种原因导致的定转子间非正常摩擦,是常见的机械故障之一。这种现象会导致系统振动加剧、性能下降,并可能引发严重事故。因此,研究碰摩对机械动力学特性的影响具有重要的理论和实际意义。 文中通过建立单跨双盘转子系统的数学模型来探讨转子与定子之间的接触碰撞问题。该系统包含两个惯性元件(即两个盘)及连接它们的轴,并且仅有一个自由度,在风机、泵等设备中常见类似结构。 研究采用Newmark-β数值积分算法进行动力学分析,这是一种常用的数值方法,通过预测校正过程求解动态方程以获得位移、速度和加速度响应。研究表明,随着转速增加,系统运动模式会从周期1发展到周期4;不平衡量的增大则会导致振动幅度显著提高。 本研究为旋转机械的设计优化提供了依据,并对碰摩故障时的动力学行为进行了深入分析,有助于改进设计以减少故障发生几率和准确监测诊断。文中提及的关键理论和技术包括Hertz接触理论、单点碰摩、不平衡量及Newmark-β数值积分等。 此外,本段落还参考了其他学者的研究成果,这些研究从不同角度探讨了旋转机械碰摩问题的特性,为本研究提供了理论支持与方法论借鉴。例如,文献[1]分析了非线性转子系统发生碰摩时的动力学行为变化规律;而文献[2]则通过实验模拟并利用关联维数进行时间序列分析来揭示系统运动状态的变化。 该研究成果得到了基金项目的支持,并介绍了作者及其研究团队在转子动力学及故障诊断领域的贡献,致力于提高旋转机械设备的可靠性。
  • 尔圆_MATLAB_
    优质
    摩尔圆摩擦_MATLAB_介绍了一种基于MATLAB软件进行摩尔圆与土木工程中摩擦角分析的方法,适用于材料力学和岩土工程的研究及教学。 摩尔圆是土力学中的一个重要概念,全称摩尔应力圆,由美国土木工程师摩尔在1936年提出。这个理论被广泛应用于工程地质、岩土工程等领域,在分析土壤或岩石的剪切破坏时具有重要意义。 内摩擦角是指颗粒间的摩擦力与正压力之比,反映了土体内部颗粒之间的滑动阻力;粘聚力是颗粒间相互吸引的力量,对于无粘性土来说,其值通常为零。在发生剪切破坏时,摩尔圆可以表示大主应力和小主应力的关系,并且圆上的任意一点对应一个可能的剪切面。 利用MATLAB进行编程可以帮助求解与摩尔圆相关的参数。我们需要现场测试得到的数据来确定峰值剪应力、残余剪应力及相应的正应力值。然后,通过线性回归或最小二乘法等方法拟合这些数据,找到最合适的内摩擦角和粘聚力数值。 具体步骤包括: 1. 输入实验获得的剪切强度参数及其对应的正应力值。 2. 使用MATLAB进行计算并绘制摩尔圆图,并将原始的数据点展示在图表上以验证模型的有效性。 3. 根据所绘图形分析土壤或岩石的力学性能,判断其是否满足工程需求。 通过这种方式,可以更好地理解和应用摩尔圆理论,在实际工程项目中解决与土体稳定性和边坡安全性相关的问题。
  • MATLAB开——与物理模型
    优质
    本项目利用MATLAB进行机械系统中的摩擦和物理行为建模与仿真,旨在深入理解复杂机械系统的动力学特性。 在Simulink®和物理建模环境中使用MATLAB开发机械摩擦的模型并进行模拟。
  • 基于Stribeck模型的PID控制(全文).pdf
    优质
    本文探讨了基于Stribeck摩擦模型的PID(比例-积分-微分)控制器的应用与优化,分析了其在不同摩擦条件下的控制效果和稳定性。通过仿真验证了改进策略的有效性。 精品资料 欢迎下载。
  • 个人整理的2022年至今WOS上有关子皮肤及自供传感器/4D打印的综述文章汇总
    优质
    本简介汇集了2022年以来Web of Science数据库中关于摩擦纳米发电机、电子皮肤和自供电传感器以及4D打印技术的相关综述文章,旨在为科研人员提供最新的研究进展概览。 尽管关于传感器的文章和综述众多,但对于科研新手来说,整理这些资料并逐一查找仍然十分复杂。我阅读了大量国内外文献,并总结了几本相关书籍的内容,对整个研究思路和流程进行了汇总。在文件夹中归纳了2022年以来WOS数据库中有关摩擦纳米发电机、电子皮肤以及自供能传感器/4D打印的综述文章。 通过分享这份资料库,希望帮助那些还不清楚如何开展柔性电子皮肤科研工作的博士生和硕士生们快速进入这一领域。
  • Darcy-Weisbach系数的MATLAB开
    优质
    本文介绍了基于MATLAB平台对Darcy-Weisbach摩擦系数计算方法的实现与优化。通过编程简化了复杂流体力学问题的求解过程,为工程应用提供了便捷工具。 在流体动力学中,达西摩擦系数公式是基于实验数据和理论推导得出的无量纲参数——达西摩擦系数。该系数用于描述管道流动中的摩擦损失以及明渠流量,在Darcy-Weisbach方程中有重要应用,并且也被称为阻力系数或简单的摩擦系数,其值大约为范宁摩擦系数的四倍。 在公式中,“f”代表达西摩擦系数;“ε”表示粗糙度高度(单位:米或英尺);“D”是水力直径(单位:米或英尺),对于充满流体的圆形管道而言,它等于内径。此外,“Re”指的是雷诺数,而“ρ”和“μ”分别代表流体密度与粘度。