Advertisement

基于白鲸优化算法与NSGA-II的多目标优化算法实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究结合了白鲸优化算法和NSGA-II,提出了一种新的多目标优化方法,旨在提高复杂问题求解效率及解的质量。 本资源使用Matlab实现多目标白鲸优化算法,能够解决无约束条件和有约束条件的多目标优化问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • NSGA-II
    优质
    本研究结合了白鲸优化算法和NSGA-II,提出了一种新的多目标优化方法,旨在提高复杂问题求解效率及解的质量。 本资源使用Matlab实现多目标白鲸优化算法,能够解决无约束条件和有约束条件的多目标优化问题。
  • NSGA-II
    优质
    NSGA-II是一种高效的多目标进化算法,用于寻找复杂问题中的多个最优解。它通过非支配排序和拥挤度距离等机制,在保持解集多样性和收敛性之间取得平衡。 NSGA-II(非支配排序遗传算法II)是一种著名的多目标优化算法。该程序实现了这一算法。相较于最初的NSGA,NSGA-II进行了多项改进。最初的NSGA是由N. Srinivas 和 K. Deb在1995年提出,并发表于一篇名为《Multiobjective function optimization using nondominated sorting genetic algorithms》的论文中。此算法在快速找到Pareto前沿和保持种群多样性方面表现良好,且修正了针对二进制编码的64位Linux系统中的一个错误。
  • NSGA-IIMatlab
    优质
    本项目采用Matlab编程实现了基于NSGA-II(非支配排序遗传算法二代)的多目标优化解决方案。该算法广泛应用于工程设计、经济管理等领域,以有效寻找到问题的最佳解集。 上传的算法程序为非支配排序遗传算法NSGA-II,包含主函数、初始变量函数、竞标选择、遗传操作、非支配排序程序、替换程序以及目标函数程序。下载后只需编写自己的目标函数并调整相应的输入变量参数即可使用该算法程序。
  • MATLAB(NSGA-II)
    优质
    本研究采用MATLAB平台实现NSGA-II算法,旨在解决复杂工程问题中的多目标优化需求。通过模拟进化过程,有效寻找帕累托最优解集。 本资源适用于多个目标函数及变量的应用场景,例如三目标三变量的情况。
  • NSGA-II 遗传
    优质
    简介:NSGA-II是一种用于解决多目标优化问题的高效遗传算法,通过非支配排序和拥挤距离机制,有效寻找帕累托前沿解集。 NSGA-II多目标遗传算法的MATLAB实现已经过实测可以运行,可供参考。
  • MATLAB(DE、MMODE、MODEA、NSGA-II
    优质
    本研究探讨了在MATLAB环境下四种主流多目标优化演化算法(差分进化(DE)、混合多目标差分演化(MMODE)、多目标差分演化算法(MODEA)及非支配排序遗传算法(NSGA-II))的实现与比较,为复杂工程问题提供高效解决方案。 本段落介绍了几种用于解决多目标优化问题的演化算法:差分进化(DE)、混合多目标差分进化(MMODE)、基于分解的多目标差分进化(MODEA)以及非支配排序遗传算法II(NSGA-II)。此外,还涉及了这些算法的具体实现,并包括测试集和性能度量指标。
  • MATLABNSGA-2
    优质
    本研究利用MATLAB软件平台实现了NSGA-2(快速非支配排序遗传算法二代)的多目标优化算法,并探讨了其在复杂问题求解中的应用效果。 该NSGA-2优化算法可直接运行,并允许用户自由设置目标函数及约束函数。作者在每行代码后添加了中文注释,帮助使用者更好地理解算法的原理。
  • NSGA_II.rar_NSGA IIMatlab_NSGA-II__NSGA_II_NSGA
    优质
    本资源包包含NSGA-II(快速非支配排序遗传算法第二版)的相关代码和文档,适用于使用Matlab进行多目标优化问题的研究与实践。 NSGA_II多目标优化算法适用于工程优化计算,具有很好的性能和强大的功能。
  • NSGA-II例——进应用(matlab开发)
    优质
    本项目采用MATLAB编程环境,应用改进的非支配排序遗传算法(NSGA-II)解决复杂工程问题中的多目标优化问题,展示了该算法在实际场景下的高效性和实用性。 使用传统的线性和非线性规划优化算法在寻找全局最优解或处理多目标优化问题中的帕累托前沿方面存在困难。目前的研究倾向于采用进化算法(例如遗传算法、粒子群优化等)来应对这类挑战。在这篇文章中,著名的NSGA-II进化算法被用来解决两个典型的多目标优化问题。这两个例子都涉及连续的决策变量空间,并且它们的目标函数可能不一定是连续的。第一个示例MOP1包括了两个目标函数和六个决策变量,而第二个示例MOP2则包含三个目标函数及十二个决策变量。“nsga_2.m”是主执行文件(实际上是一个脚本)。我分享这些作业文档是因为我发现大家对进化算法非常感兴趣。请根据需要编辑它们,并随时提供您的意见或建议。我很期待收到反馈信息。想要了解更多关于NSGA-II的信息,可以访问坎普尔遗传算法实验室的官方网站。
  • NSGA-II入门详解PPT
    优质
    本PPT深入浅出地介绍了NSGA-II(快速非支配排序遗传)多目标优化算法的基本概念、工作原理及应用实例,适合初学者掌握其核心思想与实践方法。 非支配排序、拥挤度计算以及Pareto前沿是NSGA-II算法的重要组成部分。与之相比,早期的NSGA算法存在一些缺陷:时间复杂度较高(O(MN^3)),其中M表示目标函数的数量,而N代表种群大小;缺乏精英保留策略,并且需要人为设定共享参数σshare。 为改进这些问题,NSGA-II引入了快速非支配排序法以将时间复杂度优化至O(MN^2),同时采用了拥挤距离来替代共享函数算法从而保持种群多样性。此外,该版本还首次加入了精英保留策略。 在解释这些概念时可以举一个例子:假设你有两个目标——花费和旅行时间,并且这两个因素都越低越好。例如,动车A(费用为270元、时间为7小时),普快B(费用120元、时间10小时)以及飞机C(费用240元、时间2小时)。根据这个例子可以知道,方案C支配着方案A;而由于B和C在两个目标上没有一方全面优于另一方的情况存在,因此它们之间是非支配关系。 非支配排序的目标是获得一组Pareto最优解集。