
向量均方根误差计算:MATLAB中的RMSE函数
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本文章详细介绍如何在MATLAB中编写和使用RMSE(均方根误差)函数来计算预测值与观测值之间的误差,帮助用户优化数据分析模型。
RM_STATISTICS 函数计算两个向量序列之间的均方根误差 (RMSE)。该函数的输入参数包括 uN(向量 N 的东向分量)、vN(向量 N 的北向分量)、uM(向量 M 的东向分量)和 vM(向量 M 的北向分量)。输出结果包含 Mse(系统误差矢量的模,即统计偏差),Dse(系统误差矢量的方向,以度数表示从北沿顺时针方向计算的结果)、stdL1(随机误差椭圆的主要半轴长度)、stdL2(随机误差椭圆的次级半轴长度)和 alfa1(主轴与正东向之间的夹角)。两个时间序列的接近程度可以通过均方根误差 (RMSE) 来评估,它是真实值和预测值之间差异平方的平均数。对于向量过程而言,RMSE 是“可验证”和“实际”向量序列间差别的统计偏差与随机变异性的组合,计算公式为 RMSE=(mean(R))^2+((R - mean(R))^2)/L。
全部评论 (0)
还没有任何评论哟~


