Advertisement

利用RBF神经网络算法进行卫星轨道与姿态控制的Matlab源码实现.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包含基于RBF(径向基函数)神经网络算法在MATLAB环境下实现的卫星轨道及姿态控制系统代码。适用于航天工程中对智能控制方法的研究和应用。 1. 版本:MATLAB 2019a,包含运行结果。 2. 领域:基础教程 3. 内容:基于RBF神经网络算法实现控制卫星轨道和姿态的Matlab源码.zip 4. 适合人群:本科、硕士等教研学习使用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • RBF姿Matlab.zip
    优质
    本资源包含基于RBF(径向基函数)神经网络算法在MATLAB环境下实现的卫星轨道及姿态控制系统代码。适用于航天工程中对智能控制方法的研究和应用。 1. 版本:MATLAB 2019a,包含运行结果。 2. 领域:基础教程 3. 内容:基于RBF神经网络算法实现控制卫星轨道和姿态的Matlab源码.zip 4. 适合人群:本科、硕士等教研学习使用。
  • 姿动力学
    优质
    《卫星轨道及姿态的动力学与控制》一书专注于研究卫星在太空中的运动规律及其控制系统,涵盖轨道力学、姿态动力学以及相关控制策略,为航天工程提供理论和技术支持。 《卫星姿态动力学与控制》是章仁为老师的一部著作,对于学习航天器知识来说是一本很好的参考书。
  • 姿动力学
    优质
    《卫星轨道及姿态的动力学与控制》一书深入探讨了航天器在太空中运行时轨道设计、姿态调整及其动力学机制,为相关领域的研究和工程实践提供了理论和技术支持。 北京航空航天大学出版社出版了章仁为在1998年的著作。
  • 姿动力学
    优质
    本书系统介绍了卫星轨道和姿态动力学的基础理论、分析方法以及控制系统设计技术,旨在为航天器工程技术人员提供深入理解和应用指导。 被大家誉为的经典关于卫星轨道姿态动力学与控制的书籍是每位卫星研究者的必备参考书。 本书以空间动力学与控制相结合的方式以及原理与应用相融合的方法,系统地阐述了卫星轨道及姿态的基本理论概念、设计原则和方法。该著作名为《卫星轨道姿态动力学与控制》,由章仁为编著,并于1998年由北京航空航天大学出版社出版。 本书内容涵盖了中低轨道遇感卫星和静止轨道通信卫星的研究,详细介绍了空间动力学与控制相结合的方式以及原理与应用相融合的方法。全书系统地阐述了卫星轨道及姿态的基本理论、设计方法,特别强调了这些方面的重要性及其在实际操作中的运用。 书中主要内容包括: 1. 卫星轨道特性:涵盖物理量描述等基础内容。 2. 特殊轨道的设计原则和实施方式。 3. 轨道摄动分析,阐述其对卫星应用的影响及控制策略。 4. 入轨与保持的工程方法及其在实际操作中的运用。 5. 卫星姿态动力学:基于刚体转动理论的基础知识、运动的动力学分析以及多体系统建模等核心内容。 6. 姿态测定和控制系统的设计,包括角动量交换机理及动量飞轮的应用。 本书旨在为从事空间飞行器设计专业的研究生提供教材,并向卫星研发、运营与应用领域的科技人员提供实用参考。主要研究对象是地球静止轨道通信卫星以及中低轨遇感卫星。此外,书中未涉及月球探测、行星际探索和载人航天领域的内容。 原书《静止卫星的轨道和姿态控制》(1987)受到广泛欢迎,并经过多次修订和完善。在后续版本调整过程中,作者结合空间应用的发展趋势及教学实践需要进行了章节更新与名称修改以更好地契合内容方向。 该书籍从基础理论到高级应用全面覆盖了卫星轨道与姿态控制系统的重要知识领域,是从事相关研究的学者和技术人员的理想参考工具书。
  • 动力学及姿 OrbitDynamics
    优质
    《OrbitDynamics》是一款用于模拟和分析卫星在轨运动及其姿态控制系统性能的专业软件,包含丰富的算法实现。它为科研人员提供了便捷的工具来探索复杂的轨道动力学与控制策略。 这是我在SourceForge上找到的一个关于卫星轨道动力学的源码包,作者是韩冬,用C++编写,代码简单易懂,向他致敬!
  • 建模验代.zip(含姿动力学)
    优质
    本资源包含卫星姿态及轨道动力学模型及其控制算法的实验代码,适用于航天工程专业的学习者进行仿真研究。 卫星姿态控制仿真涉及卫星轨道建模、卫星运动学及动力学建模以及跟踪律计算。
  • RBF预测】RBF预测MATLAB.md
    优质
    本Markdown文档提供了一套基于径向基函数(RBF)神经网络的预测算法,并附有详细的MATLAB实现代码,适用于数据科学与机器学习领域。 基于RBF神经网络实现预测的MATLAB源码。
  • MatlabRBF
    优质
    本简介探讨了在MATLAB环境中实现径向基函数(RBF)神经网络的方法与技巧,包括其建模过程、训练算法及应用案例。 RBF神经网络包括三种主要算法:聚类算法、梯度法以及最小二乘法(OLS)。
  • 基于MATLAB六根数绘迹.zip
    优质
    本资源提供了一个使用MATLAB软件绘制卫星在地球轨道上飞行轨迹的方法。通过输入卫星的轨道六根数参数,程序能够模拟并可视化卫星绕地运行路径,适用于航天工程与天文学的学习研究。 本段落将深入探讨如何利用Matlab编程语言基于轨道六根数(即Keplerian元素)绘制卫星的飞行轨迹。这些参数是描述天体运动的关键因素,包括偏心率、近地点角距、升交点赤经、轨道倾角、偏近点角和平均运动。 首先,我们解释一下每个轨道参数的具体含义: 1. **偏心率(Eccentricity, e)**:表示轨道的形状。0代表圆形轨道;介于0到1之间的值代表椭圆轨道;等于或大于1则分别对应双曲线和抛物线轨迹。 2. **近地点角距(Argument of Periapsis, ω)**:指卫星通过最近点时,其位置与升交点赤经在轨道平面内的夹角。 3. **升交点赤经(Right Ascension of the Ascending Node, Ω)**:定义了地球赤道面上卫星轨道的上升节点相对于固定坐标系的位置角度。 4. **轨道倾角(Inclination, i)**:表示卫星轨道与地球赤道面之间的夹角大小,影响着其飞行路径的高度和倾斜程度。 5. **偏近点角(True Anomaly, ν)**:用于确定卫星在特定时刻相对于近日点的位置角度。 6. **平均运动(Mean Motion, n)**:指单位时间内卫星转过的平均角度,与轨道周期直接相关联。 接下来是使用Matlab实现这一过程的步骤: 1. 导入数据:获取并导入包含偏心率、近地点角距等信息的数据集。这些数据通常可以从航天器操作中心或公开资源中获得。 2. 计算辅助参数:根据提供的轨道六根数,计算出其他必要的辅助变量,如半长轴(a)、偏心矢量(e-vector)及dν/dt值等。 3. 定义时间范围:设定模拟的时间段,并确定所需的时间步长以创建相应的时间向量。 4. 计算卫星位置:使用Kepler方程及其他计算参数,在每个时间点上求解出卫星的径向、切线和法线速度,进而得到其三维坐标(x, y, z)位置信息。 5. 绘制轨迹图:借助Matlab中的plot3函数连接各时刻的位置数据点以形成完整的飞行路径图像。 6. 可视化处理:可选择添加地球模型,并调整视角以便于观察卫星轨道。 通过理解并应用这些理论知识,可以构建出适用于航天工程、导航系统或天体物理学研究的卫星轨迹模拟程序。掌握Matlab的数据操作和图形界面工具将有助于提高项目的执行效率与可视化效果。此外,在实际项目中还可能需要考虑地球重力场及大气阻力等因素对轨道的影响,并采用更复杂的动力学模型进行数值积分计算。 总之,利用Matlab的强大功能能够帮助我们深入理解并模拟卫星的轨道运动特性,对于相关领域的学习和研究具有重要意义。