Advertisement

关于带隙基准电压源电路的设计研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本论文深入探讨了带隙基准电压源电路设计的关键技术,分析了不同结构和参数对性能的影响,并提出了一种优化方案以提升精度与稳定性。 在模拟集成电路设计领域,带隙基准电压源电路是一个至关重要的组成部分,它能够提供精确的参考电压以满足高精度及高速度的需求。本段落提出了一种基于自偏压电流源与MOS管电流镜技术的新颖设计方案,在不使用运算放大器的情况下仍能实现高度准确的输出电压,并在-20至+80℃温度范围内保持3×10^-6/℃的温漂系数。 文章的核心贡献在于开发出一种能够提供高精度基准电压并同时满足模拟电路对速度和低噪声要求的设计方案。通过结合自偏压电流源与MOS管电流镜技术,该设计不仅提升了输出电压的精确度,还克服了传统带隙基准电压源在运算放大器限制下的不足。 文中首先回顾了传统的带隙基准电压源结构及其局限性,并进一步阐述了新设计方案的具体实现方式。通过采用自偏压电流源电路并利用MOS管电流镜技术来补偿三极管基极电流,实现了精确的镜像电流输出。这一设计能够确保在宽广温度范围内提供稳定且准确的参考电压。 综上所述,本段落提出的设计方案为模拟集成电路提供了有效的高精度基准电压解决方案,不仅满足了高速和低噪声的需求,还具备广泛的适用性,在数据转换器、滤波器等应用中具有显著优势。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本论文深入探讨了带隙基准电压源电路设计的关键技术,分析了不同结构和参数对性能的影响,并提出了一种优化方案以提升精度与稳定性。 在模拟集成电路设计领域,带隙基准电压源电路是一个至关重要的组成部分,它能够提供精确的参考电压以满足高精度及高速度的需求。本段落提出了一种基于自偏压电流源与MOS管电流镜技术的新颖设计方案,在不使用运算放大器的情况下仍能实现高度准确的输出电压,并在-20至+80℃温度范围内保持3×10^-6/℃的温漂系数。 文章的核心贡献在于开发出一种能够提供高精度基准电压并同时满足模拟电路对速度和低噪声要求的设计方案。通过结合自偏压电流源与MOS管电流镜技术,该设计不仅提升了输出电压的精确度,还克服了传统带隙基准电压源在运算放大器限制下的不足。 文中首先回顾了传统的带隙基准电压源结构及其局限性,并进一步阐述了新设计方案的具体实现方式。通过采用自偏压电流源电路并利用MOS管电流镜技术来补偿三极管基极电流,实现了精确的镜像电流输出。这一设计能够确保在宽广温度范围内提供稳定且准确的参考电压。 综上所述,本段落提出的设计方案为模拟集成电路提供了有效的高精度基准电压解决方案,不仅满足了高速和低噪声的需求,还具备广泛的适用性,在数据转换器、滤波器等应用中具有显著优势。
  • 及仿真
    优质
    本论文聚焦于带隙基准电压源设计与仿真的深入探讨,分析了其工作原理,并通过电路模拟验证设计方案的有效性。 设计了一款基于0.18μm CMOS工艺的带隙基准电压源,并在Hspice环境下进行了仿真。仿真的结果显示,在温度从-25℃到80℃变化的情况下,温度系数为9.14×10^-6 ℃;当电源电压在3~5 V之间波动时,输出电压保持在1 250±43 mV范围内,符合设计要求。
  • 与调整方法
    优质
    本研究探讨了带隙基准电压源的设计原理及其关键参数的优化策略,并提出了一种有效的调整方法以提高其性能稳定性。 传统的带隙基准的温度系数通常在20至100 ppm/°C之间,难以达到高精度的要求。本设计使用Cadence、Hspice等工具对传统基准源电路进行改进,并最终采用放大器反馈方式的Brokaw结构,在经过修调后可以获得低于4.5 ppm/°C的温度系数以及在工业级温度范围内的误差小于±0.1%的2.5V高精度带隙基准电压源。基于上海华虹NEC公司的BCD180工艺,该设计已在Cadence环境下通过了仿真验证。 此外,我们还研究了一种适用于大规模生产的基准源温度特性修调方法,并利用控制变量法分析影响基准源温度特性和精度的参数,从而找到了基本的修调规律。
  • Brokaw分析和 (2007年)
    优质
    本文深入探讨了Brokaw带隙电压基准电路的工作原理及其在模拟集成电路中的应用,并对其进行了详细的分析与优化设计,以提升性能稳定性。 本段落旨在分析运算放大器对带隙基准的影响,并在此基础上设计一种Brokaw型(2.5V,13.3×10^-6℃)的带隙电压基准。以Brokaw结构为基础进行电路设计,在上华0.6μm Bicmos工艺仿真下,该基准电压在温度范围-40℃至+85℃内变化为2.5±0.001V,其温度系数为13.3×10^-6℃。最终实现了一阶温度补偿,使得电路的温度漂移较小。
  • 优质
    本项目专注于设计一种高精度、低功耗的带隙基准电压源。通过优化电路结构和参数选择,旨在实现温度补偿功能,确保在不同环境条件下提供稳定的参考电压。 毕业设计题目为带隙基准电压源的设计(Bandgap)。
  • 低温度系数CMOS
    优质
    本研究聚焦于设计与优化低温度系数的CMOS带隙基准电压源,旨在提升其稳定性和精度,适用于集成电路中的各种应用需求。 为了满足深亚微米级集成电路对低温漂、低功耗电源电压的需求,提出了一种采用0.25 μm N阱CMOS工艺并结合一阶温度补偿技术设计的CMOS带隙基准电压源。该设计方案的核心部分由双极晶体管构成,实现了VBE和VT的线性叠加,从而获得近似零温度系数的输出电压。T-SPICE软件仿真结果显示,在3.3 V的工作电压下,当环境温度在-20至70 ℃范围内变化时,此设计所得到的输出电压具有10×10^-6/℃的温度漂移,并且其标准偏差较小。
  • 高性能CMOS
    优质
    本研究专注于高性能CMOS带隙基准电压源的设计与优化,致力于提升其温度稳定性、功耗效率及输出精度,在集成电路领域具有重要应用价值。 设计了一种应用于集成稳压器的高精度带隙基准电压源电路。采用共源共栅电流镜结构以及精度调节技术,有效提高了电压基准的温度稳定性和输出电压精度。通过Hynix 0.5 μm CMOS工艺仿真验证,在25 ℃时,温度系数几乎为零,电源电压变化导致的基准电压波动小于0.1 mV;在-40~125 ℃范围内,基准电压最大变化量为4.8 mV,满足设计指标要求。
  • 整体
    优质
    本研究聚焦于设计与分析带隙基准电压源的整体电路结构,探讨其在集成电路中的应用及其性能优化。 本段落介绍了一款高性能带隙基准电压源的总体电路图。该电路采用Chartered 0.35μm CMOS工艺实现,并使用3.3V电源电压,在-40至100℃的温度范围内,实现了低于6ppm/℃的温度系数;在1kHz和27℃条件下,电源抑制比达到了82dB。
  • 方法
    优质
    本文探讨了低压环境下设计高效能带隙基准电压源的方法,旨在提高电路性能和稳定性。 本段落提出了一种在低电压供电条件下设计带隙基准电压源电路的方法。通过改进传统的带隙基准电路,该电路能够在600毫伏的输出基准电压下保持零温度系数的要求。
  • 优质
    带隙基准源电路是一种在集成电路中广泛应用的电压参考电路,能够提供温度稳定的电压输出。它基于半导体材料的带隙电压特性设计,广泛应用于各种需要稳定电压源的电子设备中。 ### 带隙基准源详解 #### 一、引言 在模拟电子设计领域,带隙基准源(Bandgap Reference)是一种重要的电路组件,用于提供一个稳定且精确的电压参考值,不受温度变化的影响。这一特性使其成为精密电源管理、信号处理及数据转换等众多应用中的关键组成部分。本段落将详细介绍带隙基准源的基本原理、设计方法及其在实际应用中的重要性。 #### 二、带隙基准源的基本原理 带隙基准源的核心在于利用两种不同材料或结构的半导体元件之间的电压差随温度的变化率来抵消单一元件随温度变化的影响,从而实现温度补偿。通常情况下,该电路由两个PN结组成:一个是发射极与基极之间的电压(VBE),另一个是经过特殊设计的“带隙”电压(Vgap)。 1. **VBE温度特性**:对于典型的硅基PN结,VBE随着温度的升高而线性下降,其温度系数约为-2.1mV/°C。 2. **Vgap温度特性**:通过特定设计,可以得到一个几乎不随温度变化的电压值,即带隙电压Vgap。这个电压值通常在1.2伏左右(对于硅材料)。 将这两种电压组合起来,可以通过适当的电阻比例调整来消除温度的影响,从而获得一个稳定的参考电压。 #### 三、设计要点 1. **温度补偿**:选择合适的电阻比以确保VBE和Vgap的温度效应相互抵消。这通常涉及到复杂的电路设计和仿真分析。 2. **电流镜像技术**:为了保持电路中各部分的电流一致性,常采用电流镜像技术。这样可以减少由于电流不匹配导致的误差。 3. **工艺兼容性**:带隙基准源的设计需要考虑与现有半导体制造工艺的兼容性,确保能够在标准的CMOS工艺中实现。 #### 四、实际应用案例分析 根据所提供的部分内容,James D. Beasom在IEEE Journal of Solid-State Circuits上发表的文章详细介绍了温度效应对带隙参考源的影响及其准确分析方法。这表明了带隙基准源不仅在理论上有着深入的研究,在实践中也得到了广泛的应用和发展。 - **温度效应分析**:通过精确地分析不同温度下PN结的特性,能够优化电路设计,提高参考电压的稳定性。 - **高精度应用**:在需要极高精度电压参考的场合,如高性能ADCDAC、精密放大器等,带隙基准源的准确性至关重要。 - **辐射硬化设计**:文章提到的辐射硬化设计意味着这些电路能够在极端环境下工作,如太空应用等。 #### 五、总结 带隙基准源作为一种基本但极其重要的电路组件,在模拟电子设计中扮演着不可替代的角色。通过对基本原理的理解、精确的设计以及在实际应用中的不断优化,带隙基准源能够为各种电子产品提供稳定可靠的电压参考,从而确保系统的整体性能。未来,随着对更高精度和更小尺寸的需求不断增加,带隙基准源的技术也将继续发展和完善。