Advertisement

实践中的深度学习.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《实践中的深度学习》是一份探讨如何将深度学习技术应用于实际问题解决的文档。它涵盖了从理论基础到应用案例的全面介绍,旨在帮助读者理解并掌握深度学习在不同场景下的实现方法和技术细节。 ### 动手学深度学习——基础篇 #### 目录概览与背景介绍 《动手学深度学习》是一本旨在帮助读者从理论到实践全面掌握深度学习技术的教材。本书覆盖了深度学习的基础知识、核心算法及实际应用案例,特别强调数据操作、数据预处理以及线性代数等基础知识的学习。 #### 数据操作 **入门:** - **数组创建:**在深度学习中经常需要处理多维数组(张量)。掌握如何使用`NumPy`或框架如`PyTorch`和`TensorFlow`来创建基本的数组结构至关重要。 - **数据类型:**了解不同数据类型及其在计算中的意义。 **运算符:** - **算术运算:**加减乘除等基础操作。 - **比较运算:**用于判断两个数组元素之间的关系。 - **逻辑运算:**如与、或、非,复合条件的判断。 **广播机制:** - **定义:**允许在不同形状的数组之间执行算数运算。例如可以将一个`(1, 2)`形状和另一个`(3, 1)`形状相加得到结果为`(3, 2)`。 - **应用场景:**常用于权重更新等场景,提高模型训练效率。 **索引和切片:** - **索引:**获取特定位置的元素。 - **切片:**选取连续的一段元素,支持多维度选择方式。 - **高级索引:**使用布尔数组或整数数组进行复杂操作。 **节省内存:** - **视图:**提供对原始数据的不同视角而不复制数据,有效减少内存占用。 - **转置:**改变轴序但不增加额外的存储需求。 **转换为其他Python对象:** - **列表:**将数组转换为方便处理的数据结构。 - **字典:**按键值形式存储特定数组时有用的方法。 #### 数据预处理 **读取数据集:** - **文件格式:**常见的包括CSV、JSON等,了解如何高效地读写这些格式对于实际操作至关重要。 - **库选择:**利用`pandas`等库来解析和处理数据集。 **处理缺失值:** - **识别方法:**使用特定函数或方法检测并标记缺失值。 - **填充策略:**采用插值、均值中位数等方式填补,避免偏差。 **转换为张量格式:** - **定义:**将数据转化为深度学习模型可以使用的张量形式。 - **库支持:**多数框架如PyTorch和TensorFlow提供了内置函数来实现这一过程。 #### 线性代数 **标量、向量、矩阵与张量:** - **标量:**单一数值,没有方向。 - **向量:**一组按顺序排列的数值,有明确的方向。 - **矩阵:**由行和列组成的二维数组,通常用于表示线性变换。 - **张量:**多维数组,是矩阵的一种推广。 **张量算法的基本性质:** - **加法运算:**对应位置元素相加。 - **乘法形式:**包括点积、外积等不同方式。 - **转置操作:**交换维度顺序,在处理高维数据时尤为重要。 **降维方法:** - **定义:**减少数据的维度,便于可视化或简化计算。 - **常用技术:**主成分分析(PCA)和奇异值分解(SVD)等。 **点积(Dot Product):** - **定义:**两个向量对应元素乘积之和。 - **应用场景:**用于评估向量之间的相似度。 **矩阵与向量的运算:** - **定义:**矩阵每一行与向量相乘再求和,得到新的向量结果。 - **应用场景:**在神经网络中计算层间信号传递的关键步骤之一。 **矩阵间的乘法操作:** - **定义:**涉及行列点积的复杂组合运算。 - **应用场景:**广泛应用于线性回归、神经网络等机器学习模型之中。 通过上述知识点的学习,读者不仅能掌握坚实的数学基础,还能更好地理解和应用深度学习技术。这本书提供了丰富的实例和详尽解释,为初学者构建了清晰的学习路径。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    《实践中的深度学习》是一份探讨如何将深度学习技术应用于实际问题解决的文档。它涵盖了从理论基础到应用案例的全面介绍,旨在帮助读者理解并掌握深度学习在不同场景下的实现方法和技术细节。 ### 动手学深度学习——基础篇 #### 目录概览与背景介绍 《动手学深度学习》是一本旨在帮助读者从理论到实践全面掌握深度学习技术的教材。本书覆盖了深度学习的基础知识、核心算法及实际应用案例,特别强调数据操作、数据预处理以及线性代数等基础知识的学习。 #### 数据操作 **入门:** - **数组创建:**在深度学习中经常需要处理多维数组(张量)。掌握如何使用`NumPy`或框架如`PyTorch`和`TensorFlow`来创建基本的数组结构至关重要。 - **数据类型:**了解不同数据类型及其在计算中的意义。 **运算符:** - **算术运算:**加减乘除等基础操作。 - **比较运算:**用于判断两个数组元素之间的关系。 - **逻辑运算:**如与、或、非,复合条件的判断。 **广播机制:** - **定义:**允许在不同形状的数组之间执行算数运算。例如可以将一个`(1, 2)`形状和另一个`(3, 1)`形状相加得到结果为`(3, 2)`。 - **应用场景:**常用于权重更新等场景,提高模型训练效率。 **索引和切片:** - **索引:**获取特定位置的元素。 - **切片:**选取连续的一段元素,支持多维度选择方式。 - **高级索引:**使用布尔数组或整数数组进行复杂操作。 **节省内存:** - **视图:**提供对原始数据的不同视角而不复制数据,有效减少内存占用。 - **转置:**改变轴序但不增加额外的存储需求。 **转换为其他Python对象:** - **列表:**将数组转换为方便处理的数据结构。 - **字典:**按键值形式存储特定数组时有用的方法。 #### 数据预处理 **读取数据集:** - **文件格式:**常见的包括CSV、JSON等,了解如何高效地读写这些格式对于实际操作至关重要。 - **库选择:**利用`pandas`等库来解析和处理数据集。 **处理缺失值:** - **识别方法:**使用特定函数或方法检测并标记缺失值。 - **填充策略:**采用插值、均值中位数等方式填补,避免偏差。 **转换为张量格式:** - **定义:**将数据转化为深度学习模型可以使用的张量形式。 - **库支持:**多数框架如PyTorch和TensorFlow提供了内置函数来实现这一过程。 #### 线性代数 **标量、向量、矩阵与张量:** - **标量:**单一数值,没有方向。 - **向量:**一组按顺序排列的数值,有明确的方向。 - **矩阵:**由行和列组成的二维数组,通常用于表示线性变换。 - **张量:**多维数组,是矩阵的一种推广。 **张量算法的基本性质:** - **加法运算:**对应位置元素相加。 - **乘法形式:**包括点积、外积等不同方式。 - **转置操作:**交换维度顺序,在处理高维数据时尤为重要。 **降维方法:** - **定义:**减少数据的维度,便于可视化或简化计算。 - **常用技术:**主成分分析(PCA)和奇异值分解(SVD)等。 **点积(Dot Product):** - **定义:**两个向量对应元素乘积之和。 - **应用场景:**用于评估向量之间的相似度。 **矩阵与向量的运算:** - **定义:**矩阵每一行与向量相乘再求和,得到新的向量结果。 - **应用场景:**在神经网络中计算层间信号传递的关键步骤之一。 **矩阵间的乘法操作:** - **定义:**涉及行列点积的复杂组合运算。 - **应用场景:**广泛应用于线性回归、神经网络等机器学习模型之中。 通过上述知识点的学习,读者不仅能掌握坚实的数学基础,还能更好地理解和应用深度学习技术。这本书提供了丰富的实例和详尽解释,为初学者构建了清晰的学习路径。
  • (PyTorch)
    优质
    《实践中的深度学习(PyTorch)》是一本专注于使用PyTorch框架进行深度学习应用开发的手册,内容涵盖了从基础概念到高级技巧的全面指导。 希望参考《动手学深度学习(Pytorch)》中的d2lzh_pytorch资源。
  • :PyTorch版
    优质
    《实践中的深度学习:PyTorch版》是一本深入浅出介绍如何使用PyTorch框架进行深度学习项目开发的技术书籍。本书通过丰富的实例和练习帮助读者掌握深度学习的核心概念和技术,适合初学者及有一定经验的学习者阅读。 《动手学深度学习PyTorch》是一本旨在帮助读者深入理解和掌握PyTorch框架以及深度学习基础知识的教程。通过本书,你将能够系统地学习到如何使用PyTorch进行深度学习模型的构建、训练和优化。 我们从PyTorch的基本使用开始介绍。其核心是Tensor(张量),它是多维数组,可以进行各种数值计算。张量的操作包括创建、初始化、运算和转换等。此外,PyTorch的自动求梯度机制使得构建和训练神经网络变得简单,并能自动计算梯度用于反向传播和参数更新。 接着我们将深入探讨深度学习的基础知识。它通过构建多层非线性模型来模拟人脑的学习过程。基础概念包括神经网络、激活函数(如ReLU、sigmoid和tanh)、损失函数(如均方误差和交叉熵损失)、优化器(如随机梯度下降SGD、Adam和RMSprop)以及正则化技术(如L1和L2正则化)。 在实现深度学习算法方面,我们将从最简单的前馈神经网络开始,逐步过渡到卷积神经网络(CNN)和循环神经网络(RNN),以及它们的变种,如长短时记忆网络(LSTM)和门控循环单元(GRU)。这些模型在图像识别、自然语言处理等领域有广泛应用。此外还会涉及现代注意力机制、自注意力和Transformer模型等当前深度学习领域的热点。 书中还介绍强化学习这一重要分支,它通过与环境的交互来学习最优策略,并提供实现Q学习、策略梯度等算法的方法。 除了理论知识,实践是提升技能的关键。本书包含大量代码示例,让你亲手实现各种深度学习模型并在真实数据集上进行训练和验证,帮助你更好地理解其工作原理并应用于实际项目中。 最后我们将讨论如何将训练好的模型转化为生产环境可用的形式,例如使用ONNX进行模型转换或利用TorchScript进行静态图编译等方法。 《动手学深度学习PyTorch》是一本全面且深入的教程,无论你是初学者还是有一定经验的开发者都能从中受益。通过本书的学习,你将能够熟练运用PyTorch进行深度学习模型的设计、训练和部署,并为你的AI项目奠定坚实的基础。
  • 动手(PyTorch版).pdf
    优质
    本书《动手实践深度学习(PyTorch版)》通过丰富的实例和教程,帮助读者掌握使用PyTorch框架进行深度学习开发的技术与方法。 《动手学深度学习》PyTorch版是一本全面介绍深度学习的实践教程文档。
  • 项目:探索
    优质
    本项目聚焦于深度学习的实际应用与研究,涵盖神经网络模型构建、训练优化及案例分析等内容,旨在提升参与者的理论知识和实战技能。 深度学习是人工智能领域的一项核心技术,它利用神经网络模型对复杂数据进行建模,在图像识别、语音识别及自然语言处理等领域展现出卓越的能力。本项目旨在使用Python编程中的Keras库和TensorFlow后端来实施深度学习项目。 Keras是一个高级的神经网络API,通过Python接口运行在如TensorFlow、Theano或CNTK等不同的计算平台之上。它的设计目的是为了方便用户操作,并且模块化的设计让研究人员可以快速地测试他们的想法,推动了深度学习领域的进步。其主要优势在于清晰简洁的代码结构,便于实现复杂的网络架构。 TensorFlow是由Google开发的一个开源机器学习框架,它引入了数据流图的概念用于数值计算,在深度学习中描述的是模型中的数学操作流程以及这些操作间的数据流动。该框架的一大特点是可以高效地在各种硬件平台上运行,包括CPU、GPU和TPU等。 本项目可能包含以下内容: 1. 数据预处理:深度学习模型的表现很大程度上依赖于输入数据的质量。这一步骤通常涉及数据清洗、归一化、标准化以及特征提取等工作。 2. 构建神经网络模型:Keras提供了多种预先定义的层,如卷积层和全连接层等,并且还有不同的优化器可供选择,使得构建深度学习模型变得非常简便。项目中可能会展示如何创建多层感知机(MLP)、卷积神经网络(CNN)或循环神经网络(RNN)。 3. 训练与验证:通过划分训练集、验证集和测试集进行操作,演示在Keras环境下配置参数设置损失函数及指标,并执行模型的训练过程。这可能涵盖批量大小的选择、训练周期数以及早停策略等细节。 4. 模型评估:完成模型训练后,将展示如何使用测试数据来衡量其泛化能力,包括准确率、精确度和召回率在内的多种性能评价标准都将被提及。 5. 模型保存与加载:Keras支持对整个模型以及权重的存储及恢复功能,在后续的操作中可以快速地回到之前的训练状态继续进行开发工作或调整实验设置。 6. 实战应用案例分析:项目可能会包含图像分类、文本情感分析和语音识别等具体的应用场景,展示了深度学习技术解决实际问题的能力。 7. 模型优化方法探讨:可能包括超参数调优、正则化措施以及数据增强策略等内容来提高模型的性能。 综上所述,通过结合使用Keras与TensorFlow框架,本项目为初学者提供了一个实践平台以掌握深度学习的基本流程,并体验高级API带来的便捷性。研究该项目有助于加深对理论知识的理解并提升实际操作能力。
  • []动手笔记-6
    优质
    本篇笔记是关于深度学习系列教程的第六部分,内容主要围绕着模型优化、正则化技术以及卷积神经网络的实际应用进行详细探讨和代码实现。 任务三——循环神经网络进阶6.1 长短期记忆(LSTM) 6.1.1 理论知识理解:理解LSTM网络 6.1.2 LSTM的从零开始实现 以下为代码: 导入相应的包 ```python import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append(..) import d2lzh_pytorch as d2l device = torch.device(cuda if torch.cuda.is_available() else cpu) ```
  • Python-PyTorch
    优质
    本书通过实际案例详细讲解了如何使用Python编程语言及PyTorch库来实现深度学习模型,旨在帮助读者掌握深度学习技术的实际应用。 这是将《动手学深度学习》和伯克利大学STAT 157(2019年春季)课程的教材代码改写成PyTorch的尝试。
  • 及应用期末复题.pdf
    优质
    本PDF文档汇集了深度学习及应用实践课程的期末复习题目,涵盖神经网络、卷积神经网络、循环神经网络等核心概念与技术应用实例,旨在帮助学生全面掌握课程知识点,为考试做好准备。 东华大学深度学习与应用实践课程的课后作业与期末复习题。
  • —卷积神经网络
    优质
    本课程深入探讨了卷积神经网络在实际应用中的运作原理与技巧,旨在帮助学员掌握其核心概念及开发技术。 典型的卷积神经网络由卷积层、池化层和全连接层构成。在原始输入上进行特征提取是通过卷积操作实现的。简而言之,就是在一个个小区域中逐个提取特征。 以一个例子为例:第一次卷积可以提取低层次的特征;第二次则能获取到中间级别的特征;而第三次则是高层次的特性。随着不断的深入和压缩,最终会得到更高层面上的特征——也就是对原始输入进行一步步浓缩后得出的结果,这使得最后获得的特性更加可靠。 基于这些高级别的特征,我们可以执行各种任务,例如分类或回归等操作。卷积层之所以得名于“卷积”,是因为它使用了这种运算方式;然而,在实践中通常采用互相关(cross-correlation)来进行计算。
  • 集成.pdf集成.pdf集成.pdf集成.pdf
    优质
    《集成学习实践》是一份深入探讨如何将多种机器学习模型结合以提升预测准确性的实用指南。涵盖Boosting、Bagging等核心算法及其应用案例。 集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成 learning.pdf集成学习.pdf集成学习.pdf集成学习.pdf集成学习.pdf