Advertisement

基于MATLAB的欧式期权定价(B-S模型)实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目运用MATLAB编程语言实现了基于Black-Scholes模型的欧式期权定价算法。通过模拟金融市场的波动率与利率变化,为投资者提供精准的风险评估工具。 MATLAB实现欧氏期权定价(B-S模型)程序说明:本程序经过严格测试, 放心下载使用.代码介绍:欧式看涨期权和看跌期权是金融衍生品的一种,它们的价格可以通过Black-Scholes模型(简称B-S模型)来计算。B-S模型是一个关于欧式股票看涨/看跌期权的定价模型,基于一系列假定条件,如金融资产收益率服从对数正态分布、在期权有效期内无风险利率和金融资产收益变量恒定、市场无摩擦(即不存在税收和交易成本)以及该期权是欧式期权(在期权到期前不可实施)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLABB-S
    优质
    本项目运用MATLAB编程语言实现了基于Black-Scholes模型的欧式期权定价算法。通过模拟金融市场的波动率与利率变化,为投资者提供精准的风险评估工具。 MATLAB实现欧氏期权定价(B-S模型)程序说明:本程序经过严格测试, 放心下载使用.代码介绍:欧式看涨期权和看跌期权是金融衍生品的一种,它们的价格可以通过Black-Scholes模型(简称B-S模型)来计算。B-S模型是一个关于欧式股票看涨/看跌期权的定价模型,基于一系列假定条件,如金融资产收益率服从对数正态分布、在期权有效期内无风险利率和金融资产收益变量恒定、市场无摩擦(即不存在税收和交易成本)以及该期权是欧式期权(在期权到期前不可实施)。
  • B-S研究(2011年)
    优质
    本文通过B-S模型探讨了亚式期权的定价机制,分析了其独特性及市场应用价值,为金融衍生品定价提供了理论依据。 假设金融资产为有连续红利支付的股票,并且波动率是随机变化的。在这种情况下,可以得到相应的亚式看涨期权定价公式以及算术平均亚式期权价格的上界。
  • B-S应用探讨
    优质
    本文深入分析了B-S期权定价模型的基本原理及其在金融衍生品市场的应用现状,并对其适用性进行探讨。通过案例研究,提出改进意见,以期为实际操作提供理论指导和实践参考。 关于Black-Scholes模型的分析与讲解以及推导过程的内容可以涵盖该金融数学模型的基础概念、假设前提及其应用范围。此模型主要用于计算期权的价格,并且是衍生品定价理论中的一个核心工具。重写部分会详细介绍其背后的数学原理,包括随机微分方程和偏微分方程的解决方案,同时也会探讨如何在实际金融市场中运用这一模型进行投资决策分析。
  • 跳扩散MATLAB源程序
    优质
    本MATLAB源程序运用跳扩散模型进行欧式期权定价,结合随机波动率与跳跃过程,提供金融工程领域研究和应用的有效工具。 这段代码是用于计算欧式期权价格的主程序,并且可以生成不同股票价格及利率情况下的欧式看涨期权图形。对于不同的参数设置(如跳跃幅度),该程序能够绘制相应的图表。
  • Matlab看涨跳扩散代码-...
    优质
    本资源提供了一套基于MATLAB编写的美式看涨期权跳扩散模型代码,适用于金融工程中欧美期权定价问题的研究与教学。 近年来,人们开发了许多替代模型来扩展Black-Scholes期权定价框架,以便更好地反映实际市场特征。在传统的Black-Scholes模型中,资产回报被假设为遵循布朗运动和正态分布。然而,实证研究揭示了两个关键问题:(i) 资产收益的分布具有比正态分布更高的峰度以及不对称且更重尾部的特点;(ii) 在期权市场中观察到一种称为“波动率微笑”的现象。 为了应对这些问题,一些模型被提出作为解决方案,其中包括Kou(2002)提出的跳跃扩散模型。该模型假定标的资产的价格可以根据布朗运动和双指数分布的跳变而变动。本论文旨在基于此框架开发美式期权的解析定价公式,并以此来有效确定其价格以及相关的对冲参数。 此外,本段落还包含了一个Matlab代码实现,用于模拟Kou跳跃扩散模型中的美国期权定价问题。通过该代码可以更好地理解及验证理论分析结果的有效性与实用性。
  • 二叉树MATLAB代码
    优质
    本项目提供了一种利用MATLAB实现欧式期权价格计算的方法,基于二叉树模型。通过简洁高效的代码,用户可以方便地模拟和分析金融衍生品的价格波动。 欧氏期权二叉树定价的MATLAB代码可以根据资产当前价格、期权敲定价格、年化无风险利率以及到期时间等参数来计算欧氏期权的价格。
  • MATLAB lsqnonlin代码-用洲看涨指数...
    优质
    本段代码利用MATLAB中的lsqnonlin函数优化参数,基于指数模型为欧洲式看涨期权定价。适用于金融建模与分析。 我们研究了无限活动(IA)指数Lévy模型类别中的两个模型——方差-伽玛(VG)模型和CGMY模型,旨在分析它们的简单性如何与更复杂的Heston随机波动率(SV)及Bates随机波动率跳跃扩散(SVJ) 模型竞争。我们提供了详尽的理论介绍,并在行使价和到期日之间对每种模型进行了校准。 研究结论主要体现在两个方面:首先,由于浮动微笑特性以及偏斜和峰度的变化,所分析的指数Lévy模型难以在整个期限内进行准确校准,从而导致长期OTM选择权被低估。对于短期期权而言,这些模型过度补偿了偏斜效应,因此会导致短期内期价过高。 其次,在捕捉市场动态方面,由于增加了复杂性和合并了资产收益率的风格属性(如利率和股息),Heston及Bates模型表现更佳。在R中完成了对利率和股息收益的恢复工作。从期权链中恢复这些变量的基本方法是:选择所有到期日的ATM呼叫次数,并使用看涨期权平价计算出相应的看跌期权价格,进而确定合适的利率r和股息收益率q以使市场上的实际看跌价格与通过理论模型推算的价格相匹配。
  • Heston-Nandi Heston 和 Nandi (2000) GARCH MATLAB ...
    优质
    本文章介绍了一种基于Heston和Nandi(2000)提出的GARCH模型的MATLAB实现,用于期权定价。该方法结合了随机波动率理论与实际市场数据,提供更准确的价格预测。 该函数根据Heston和Nandi(2000)的GARCH期权定价公式计算看涨期权的价格。输入参数包括:标的资产当前价格、执行价格、标的资产无条件方差、到期时间(以天为单位)以及每日无风险利率。
  • 蒙特卡洛看涨:Monte Carlo 方法
    优质
    本文采用蒙特卡洛模拟方法构建了欧洲式看涨期权的基本定价模型,通过随机抽样和统计分析来估算期权价值。 这是一个基本的蒙特卡洛欧洲期权定价模型,使用C#语言编写,并配备了Windows窗体界面(WinForms)。该应用程序主要由三部分组成:模拟器、查看以及演示者。 1. 模拟器是为整个应用设计的核心模型,在后续内容中会详细描述。 2. 查看指的是应用的用户图形接口。这是基于Form类派生的一种形式,负责管理基本输入验证,并展示图表给使用者。 3. 演示者作为模拟器和视图之间的桥梁,主要功能包括将视图中的事件绑定到Simulator的方法上以及在模拟完成后生成两个图表的数据序列。 Simulator类位于MonteCarlo.Model命名空间中。该类的主要任务是创建所需数量的SimulatedPrice路径实例,并采用并行方式运行以生成现货价格曲线。SimulatedPrice类包含多个静态变量,这些变量反映了模型初始状态的各项参数——如现货价格和行使价、mu和sigma值以及用于离散化方案类型的类型选择等。
  • MATLAB代码对影响-LévyLévy随机过程MATLAB与校准方法
    优质
    本文探讨了利用MATLAB进行Lévy期权定价的方法,结合Lévy随机过程构建模型,并详细介绍了相应的定价与参数校准技术。 本段落介绍了基于Levy随机过程的期权定价与校准方法,并提供了面向对象的MATLAB实现。该章节是关于Levy模型买卖标定硕士论文的一部分。所用代码均在文中进行了引用。 本章开发了多种算法,旨在有效地计算在同一底层证券上的多个欧洲看涨期权的价格。尽管基于傅立叶变换的算法通过前进到FFT和FRFT提高了理论计算效率,但COS方法利用余弦级数展开的快速收敛特性来提高性能。本段落将考察以下四种定价算法在MATLAB实现中的实际表现: - pFT:天真傅立叶变换定价(参考文献中相关章节) - pFFT:基于FFT算法的傅立叶定价 (参见文中指定部分) - pFRFT:基于FRFT算法的傅立叶定价 (参见文中指定部分) - pCOS:COS定价方法,如[sec:cos_method]节所述 有关常规MATLAB实现架构的信息,请参考附录中的相关章节。