Advertisement

STM32通过ADC、DMA和TIM模块采集交流信号的压缩包。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过利用Cubemx平台,我们构建了一个用于采集交流信号的示例程序,该程序巧妙地结合了ADC(模数转换器)、DMA(直接内存访问)和TIM(定时器)等模块的协同工作,从而实现了高效的信号采集过程。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32使用ADC+DMA+TIM.zip
    优质
    本资源提供了一个基于STM32微控制器利用ADC、DMA和TIM模块进行交流信号实时数据采集的详细教程与代码示例。 使用CubeMX生成的ADC+DMA+TIM采集交流信号的例程可以帮助开发者高效地配置STM32微控制器的相关外设,以便进行数据采集任务。此过程涉及自动代码生成功能,简化了硬件抽象层(HAL)驱动程序和初始化设置的工作,使得用户能够专注于应用逻辑开发而非底层细节处理。通过这种方式生成的例子通常包括定时器触发ADC采样、DMA用于高效的数据传输到内存中等关键步骤的配置示例。 这样的例子对于需要进行周期性或事件驱动数据采集的应用场景非常有用,比如工业控制中的传感器读取或是实验室测试设备的数据记录功能实现。在实际应用开发过程中,开发者可以根据具体需求调整生成代码的参数设置,并结合项目特定的功能要求进一步优化和完善相关逻辑处理部分。
  • STM32F103 ADC DMA检测程序
    优质
    本程序利用STM32F103微控制器通过ADC和DMA技术高效采集低压交流信号数据,适用于工业监测与控制领域。 使用编译器 V5.06 update 7(build 960),文件夹:已简单修改优化、美化代码,无错误及警告。详细参数需自行调整,在此仅作参考。作品来源于“https://blog..net/qq_52348250/article/details/128293766”,具体源码下载地址请在原文中查找。
  • 单片机ADC抬升
    优质
    本项目介绍如何使用单片机内置的ADC模块采集并处理来自直流抬升信号的数据,实现精确电压测量与控制。 在信号电路调试过程中,通常需要对信号进行直流抬升处理以便使用单片机进行ADC采集。如何实现直流抬升呢?我们可以通过Multisim仿真软件来进行探讨。
  • STM32DMA读取ADC
    优质
    本项目介绍如何在STM32微控制器上利用直接内存访问(DMA)技术实现多通道模拟数字转换器(ADC)的数据采集,提升系统效率。 经过多次尝试错误后,代码中的每一行都添加了详细的注释以方便大家阅读与移植。需要注意的是,STM32各系列的ADC通道数量及管脚分配有所不同,请参考对应的datasheet进行配置。本段落档中采用的型号为STM32F103C8T6,并使用PA0、PB0和PB1作为规则模式下的通道配置示例。 在移植过程中需要注意以下几点: 1. 引脚选择:请根据对应型号的datasheet自行确定引脚。 2. 通道数量:用于转换的ADC通道数需要按照实际情况进行修改; 3. 规则模式下,各通道优先级及数据存放顺序需调整。例如,在本例中,`ADC_Channel_0` 对应于PA0且其优先级为1;而 `ADC_Channel_8` 则对应PB0的优先级2。 完成上述配置修改后即可正常使用该代码。
  • STM32结合ADCDMA、USART、LCD12864TIM技术
    优质
    本项目基于STM32微控制器,综合运用了ADC模数转换、DMA直接内存访问、USART串行通信接口、LCD12864显示及TIM定时器等关键技术,实现高效的数据采集与处理。 标题中的STM32+ADC+DMA+USART+LCD12864+TIM是一个典型的嵌入式系统开发项目,涵盖了多个关键的STM32微控制器功能模块。下面将详细讲解这些组件及其相关特性。 **STM32**: STM32系列MCU具备丰富的外设接口、高性能和低功耗等优点,适用于广泛的嵌入式应用领域。在本项目中,STM32作为核心处理器,负责协调与管理所有外围设备的数据交互任务。 **ADC(模拟数字转换器)**: 内置于STM32中的多个ADC通道能够将外部的模拟信号转化为相应的数字值,用于数据采集和处理工作。例如,在连接温度传感器时,可以读取环境温度并将其数字化表示。 **DMA(直接存储器访问)**: DMA机制允许在片上外设与内存之间进行直接的数据传输操作,并且不需要CPU介入其中,从而提高了整体的数据处理效率。具体到ADC应用中,使用DMA功能能够自动将转换完成后的数据送入RAM区域,使CPU得以执行其他任务。 **USART(通用同步异步收发传输器)**: USART是一种串行通信接口模块,用于实现STM32与外部设备如计算机、其他微控制器或传感器之间的信息交换。在此项目中,它可能被用来发送或接收调试信息或是进行数据的上下位机间交互操作。 **LCD12864**: 这是一款具有128x64像素分辨率的图形点阵液晶显示屏,通常用于显示简单的文本和图像内容。通过STM32对LCD接口的有效控制,可以动态更新屏幕上的展示信息,例如温度读数或系统状态等。 **TIM(定时器)**: STM32提供的多种定时器功能包括生成周期性脉冲、计数操作以及捕获输入信号的能力。在本项目中,可能利用定时器来实现LCD的刷新频率设定、数据采集时间间隔确定或者产生系统的时钟节拍等功能需求。 项目的具体实施步骤如下: 1. 利用ADC模块获取模拟传感器(如温度传感器)所发出的电压信号,并通过DMA机制将转换结果存储到内存中。 2. 定时器触发LCD显示内容更新,STM32负责解析并显示来自ADC的数据于LCD12864屏幕上。 3. 项目可能还包含USART接口的应用场景,用于传输由ADC读取到的温度数据至上位机设备进行监控或进一步处理操作。 4. 同时利用定时器执行其他功能需求,如系统心跳检测、中断触发等。 文件名中提及了包括但不限于项目中的各个组成部分源代码及配置文件的内容,例如:ADC初始化与设置程序、DMA传输规则设定、USART通信协议实现方案、LCD驱动软件开发以及温度传感器数据读取和处理逻辑的编写工作。
  • STM32结合ADCDMA道数据
    优质
    本项目介绍如何利用STM32微控制器通过ADC与DMA技术实现高效稳定的多路模拟信号同步采样,适用于各种工业控制及监测系统。 STM32使用ADC进行数据采集,并通过DMA传输数据,该功能已经实现且绝对可用。
  • 超频样利用ADC+TIM+DMA
    优质
    本项目介绍了一种使用ADC、TIM和DMA实现超频采样的技术方案,能够有效提升信号采集精度与速度。 ADC结合TIM和DMA实现超频采样。
  • STM32ADC数据(DMA式).zip
    优质
    本资源提供了一份关于在STM32微控制器中使用DMA模式进行多通道ADC数据采集的教程和示例代码。适合嵌入式开发人员学习与参考。 利用STM32内的DMA方式实现三路ADC数据采集。
  • 基于STM32DMA读取
    优质
    本项目介绍了一种利用STM32微控制器实现电压信号采集并使用DMA技术进行高效数据传输的方法,适用于工业监测和控制系统。 基于STM32的电压信号采集及DMA读取对于需要收集传感器数据的人来说非常有用。