Advertisement

基于4-3-4取放轨迹规划的机器人实验,采用Matlab实现。

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该程序是由上海交通大学18级自动化学院机器人工程专业的某帅鸽精心提供的。它利用Matlab Robotics,成功获取了PUMA560机器人末端任意一组取放作业的四个位置点,随后通过逆解算法计算出各关节的具体位置。同时,程序设定了起始位置、目标位置的关节速度和加速度均为零,并分别假设三段运动的时间为2秒、4秒和3秒。在此基础上,该程序进一步使用Matlab对轨迹的未知系数进行了求解,从而生成了PUMA560各关节的位置、速度和加速度的精确轨迹函数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 4-3-4结构MATLAB任务
    优质
    本研究采用MATLAB平台,设计了基于4-3-4结构的机器人执行取放任务的高效轨迹规划实验,探讨其在工业自动化中的应用潜力。 此程序由SEU18级自动化学院机器人工程专业某同学提供。使用Matlab Robotics工具箱获取PUMA560机器人的末端执行器在取放作业中的四个位置点,并通过逆解计算出各关节的位置。假设起始位置和目标位置的关节速度及加速度均为零,三段运动的时间分别为2秒、4秒和3秒。然后使用Matlab求解轨迹的未知系数,生成PUMA560各关节的位置、速度和加速度的轨迹函数。
  • QPSO算法移动
    优质
    本研究提出了一种利用量子行为粒子群优化(QPSO)算法进行移动机器人轨迹规划的方法,并通过实验验证了其有效性和优越性。 针对移动机器人的路径规划问题,本段落提出了一种基于QPSO算法的路径规划方法,并运用概率论的方法分析了该方法在机器人路径规划中的收敛性,探讨了其与均匀分布及正态分布参数的关系及其收敛区间;此外还根据移动机器人的运动特性提出了改进后的轨迹规划方案。实验结果表明,在实际应用中,这种方法对于解决移动机器人的路径规划问题具有有效性和可行性。
  • Matlab3-5-3次插值代码
    优质
    本项目利用Matlab软件实现机器人关节空间中的轨迹规划,采用3-5-3次多项式插值方法确保轨迹平滑过渡,适用于工业自动化领域。 我自己写的程序,在设定时间和选择四个点方面可以随意设置,我已经亲自测试过并确认可行。
  • MATLAB源码】四旋翼跟踪与仿真(版本4
    优质
    本资源提供四旋翼无人机在MATLAB环境下的轨迹跟踪与路径规划仿真实现代码。版本4进行了优化和更新,便于用户深入学习和研究多旋翼飞行器的控制算法。 MATLAB是一种强大的工程计算软件,在信号处理、图像处理、自动控制以及通信系统等领域得到广泛应用。本段落将深入探讨“四旋翼轨迹跟踪控制与路径规划的MATLAB仿真(版本4)”,涵盖的知识点包括:四轴飞行器的基本概念,轨迹追踪控制系统原理,路径规划技术及其在MATLAB中的实现方式。 四轴飞行器是一种无人驾驶飞机(UAV),其设计特点是拥有四个螺旋桨并以X形对角排列。通过调节每个旋翼的转速来控制飞行姿态和位置,这种无人机具有垂直起降、高机动性等特性,在军事侦察、航拍摄影及救援行动中广泛应用。由于四轴飞行器动态模型复杂且自由度多,因此需要依赖精确的算法确保其安全性和稳定性。 轨迹追踪控制系统是实现四旋翼按照预定路径飞行的关键技术之一。在实际操作过程中,无人机需根据任务需求和环境条件规划一条最优或可行的飞行路线。该系统的核心在于通过计算方法实时确定飞机与预期轨迹之间的误差,并相应调整飞行姿态以缩小这个差距,从而确保准确追踪到指定航迹。 路径规划是实现轨迹跟踪控制的前提步骤之一,其目标是在从起点到达终点的过程中生成最优化或者安全性的行驶线路。进行这一过程时需考虑无人机的动力学限制、周围环境障碍物以及性能要求等要素影响因素。通常来说,可以将路径规划分为两大类型:全局路线设计和局部轨道绘制。前者侧重于在大范围内寻找符合约束条件的行进方向;后者则集中在生成避开阻碍物体的小范围轨迹上进行改进优化工作。 MATLAB仿真平台为四轴飞行器提供了便捷工具来进行路径规划与追踪控制实现。它拥有丰富的库资源,可以用来创建无人机数学模型、编写测试算法以及执行路线设计任务等操作。在本项目中可能会用到Robotics Toolboxes和Simscape Multibody这两个辅助包来简化机器人的建模及仿真流程。 具体实施步骤如下: 1. 确定四轴飞行器的动态模型,包括其惯性属性、运动学方程以及动力学公式; 2. 根据任务需求设计路径规划算法,并生成期望轨迹; 3. 设计追踪控制策略(例如PID控制器、模糊逻辑调节或神经网络等),用于调整无人机的实际路线使其靠近预期目标位置; 4. 在MATLAB环境中编写仿真程序,利用提供的模拟环境评估各种控制方案的表现效果; 5. 分析所得结果并根据需要修改模型参数和算法设置以提升飞行性能。 值得注意的是,在进行四轴飞控研究时会遇到许多非线性问题以及多变因素的影响。因此在仿真实验期间必须充分考虑诸如风速、气压变化等现实情况,从而增强仿真效果的真实性和控制策略的稳健性。 本项目的MATLAB源代码文件名为“【matlab源码】四旋翼轨迹跟踪控制和轨迹规划matlab仿真(版本4)”,包含了所有必要的程序及算法实现内容。借助该资源,研究人员和技术人员能够迅速建立仿真实验环境,并进行相关测试与评估工作。
  • PUMA560
    优质
    PUMA560机器人轨迹规划研究聚焦于开发高效算法,以实现该型号工业机器人在执行任务过程中的路径优化与精确控制。 PUMA560机器人轨迹规划的MATLAB程序用于分析和绘制关节运动轨迹。
  • (SCARA)MATLAB源码
    优质
    本MATLAB源码旨在实现SCARA机器人的高效轨迹规划,通过优化算法设计确保路径精确、流畅,适用于工业自动化和精密制造领域。 SCARA(Selective Compliance Assembly Robot Arm)是一种常见的四轴工业机器人,在电子设备、汽车零部件组装生产线等领域得到广泛应用。本资源提供的MATLAB源码专注于SCARA机器人的关节空间轨迹规划,利用了MATLAB的Robotics工具箱进行算法实现。 MATLAB是一款强大的数学计算软件,其Robotics工具箱提供了丰富的功能,可以方便地对机器人进行建模、仿真、控制和路径规划。在SCARA机器人的轨迹规划中,关键的知识点包括: 1. **机器人建模**:需要构建SCARA机器人的连杆模型,并定义各关节的自由度和运动范围。这通常通过定义机器人结构和参数来完成,例如关节角度、连杆长度等。 2. **坐标系统**:理解并建立机器人工作空间的坐标系是至关重要的。SCARA机器人有基座坐标系、关节坐标系和工具坐标系。在轨迹规划中,需将目标位置从世界坐标系转换到关节坐标系。 3. **逆运动学**:给定末端执行器(EOAT)的目标位置和姿态,通过逆运动学求解各关节的角度。MATLAB的`inverseKinematics`函数可以用于此问题,它基于特定优化策略来找到合适的解。 4. **轨迹规划**:生成平滑、无碰撞的关节运动轨迹是这一环节的重点。这可能包括插值方法(如样条插值)、优化技术以及避免奇异点的方法。MATLAB中的`spline`函数可以用于创建平滑的关节轨迹。 5. **正运动学**:在获得各关节角度序列后,通过正运动学将这些角度转化为末端执行器的实际位置。使用`forwardKinematics`函数可以计算出机器人的几何位置。 6. **仿真与控制**:可以在MATLAB环境中利用`sim`函数进行机器人运动的实时仿真,检查规划轨迹是否满足预期目标,并设计控制器(如PID控制器)以实现对关节电机的精确控制。 7. **可视化**:Robotics工具箱提供了`view`和`plot`函数,用于显示机器人的3D模型及其运动路径,帮助用户直观理解规划结果。 8. **误差分析与优化**:考虑到实际应用中的精度和稳定性要求,需要进行误差分析,并可能通过调整参数或改进算法来提高轨迹质量。 学习并使用这段MATLAB源码可以帮助深入理解SCARA机器人动力学特性,掌握如何利用MATLAB的Robotics工具箱进行机器人轨迹规划。这为设计实际机器人控制系统奠定了基础,并且可以作为进一步研究其他类型机器人的起点。
  • ADAMS研究
    优质
    本研究聚焦于利用ADAMS软件进行机器人轨迹规划的研究与应用,旨在优化机器人的运动路径和性能。通过计算机模拟和仿真技术,探索提高机器人操作效率的新方法。 利用ADAMS进行机器人的轨迹规划对于adams软件的初学者具有一定的指导意义。
  • MATLAB械臂/
    优质
    本项目探讨了在MATLAB环境中实现机械臂或机器人轨迹规划的方法和技术。通过优化算法和路径计算,确保机械臂能够高效准确地完成任务。 两点间五次多项式轨迹规划首先需要安装机器人工具箱,然后执行Matlab程序,默认使用的是五次多项式。如果想在笛卡尔空间和关节空间中进行不同的轨迹规划或使用非五次多项式的路径(如样条),可以联系我进一步讨论相关细节。
  • 4算法简介1
    优质
    本简介探讨了一种用于精确控制机器人运动的四阶轨迹规划算法。该算法通过优化多项式函数确保路径平滑及安全性,适用于复杂环境中的精准操控任务。 引入最大速度限制。当达到某个时刻的最大值时,由确定的最大速度值应为:比较给定的最大速度与计算出的速度,如果符合要求,则满足最大速度限制;否则,需要按照规定的最大速度重新进行计算。