Advertisement

椭圆拟合_two-method_fitellipse.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包含两种不同的椭圆拟合方法,以MATLAB代码形式实现。通过比较分析,帮助用户选择最适合其需求的数据拟合方案。 我收集了一位外国编写的椭圆拟合算法的C++实现版本。该算法可以根据输入的一组XY数据计算出椭圆参数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • _two-method_fitellipse.zip
    优质
    本资源包含两种不同的椭圆拟合方法,以MATLAB代码形式实现。通过比较分析,帮助用户选择最适合其需求的数据拟合方案。 我收集了一位外国编写的椭圆拟合算法的C++实现版本。该算法可以根据输入的一组XY数据计算出椭圆参数。
  • (Matlab)
    优质
    简介:本资源提供了一套详细的Matlab代码和教程,用于在图像处理中进行椭圆检测与拟合,适用于科研及工程应用。 这是一个快速且非迭代的椭圆拟合算法。用法:A = EllipseDirectFit(XY)。 输入: - XY(n,2)数组代表n个点的坐标。 - x(i)=XY(i,1) - y(i)=XY(i,2) 输出: - A=[a b c d e f],表示椭圆拟合系数向量。其方程为:ax^2 + bxy + cy^2 + dx + ey + f = 0。 其中A被归一化为||A||=1。 可以转换输出的几何参数(如半轴、中心等)的具体理论公式可以在相关文献或资源中找到。此椭圆拟合理论由以下文章提出: - A. W. Fitzgibbon, M. Pilu, R. B. Fisher Direct Least Squares Fitting of Ellipses IEEE Trans. PAMI, Vol. 21, pages 476-480 (1999) 作者称该方法为“直接椭圆拟合”。 此代码基于一个合适的数值稳定版本R.Halir和J.Flusser,仅将数据进行了中心化处理以进一步提高性能。 注意:拟合输出值为椭圆!即使点可以得到更好的近似双曲线的逼近效果,您依然会获得一个椭圆。
  • 方法
    优质
    本研究探讨了圆与椭圆在图像处理中的拟合技术,介绍了多种算法模型,并比较了它们的优缺点及适用场景。 有一大堆平面点的坐标,如果这些点构成的是圆形结构,如何求得该圆的圆心及其半径;若这些点构成了椭圆形结构,则如何计算它的圆心、长短轴以及转角?请提供VC6++编程语言的相关代码,并附带一个doc文档进行说明。
  • OpenCV中的
    优质
    本篇文章主要介绍如何在OpenCV中实现椭圆拟合技术,包括基本原理、关键函数以及应用案例。适合计算机视觉开发者学习参考。 OpenCV椭圆拟合是一种常用的图像处理技术,用于在图像中检测并拟合椭圆形物体。通过使用特定的函数或方法,可以实现对复杂形状的有效识别与分析,在目标跟踪、医学影像等领域有着广泛的应用价值。
  • MATLAB代码
    优质
    这段MATLAB代码用于实现图像中椭圆形状的自动检测与拟合,适用于目标识别、模式识别等领域。 ellipsefit 是一个用于椭圆拟合的程序。示例为 ellipse1。无论输入多少个点的坐标,此程序都能计算出拟合的椭圆方程。
  • GetCenterPoint.zip_图像边缘__获取中心点_提取
    优质
    本资源提供了一种从图像中检测和拟合椭圆形物体的方法,并精确计算其几何中心。通过边缘检测技术,能够有效识别并提取复杂背景下的椭圆形轮廓,适用于目标跟踪、模式识别等领域。 从一张图像中提取圆形的边缘,并得到一系列离散点来拟合椭圆。然后简单地去除噪声以获得椭圆中心坐标。
  • MATLAB开发-(fitellipse)
    优质
    本教程介绍如何使用MATLAB进行椭圆拟合,通过fitellipse函数实现数据点的最佳椭圆拟合,适用于图像处理和数据分析中的形状识别。 在MATLAB开发环境中使用fitellipse函数,根据一组给定的点(闭合轮廓)来找到最适合这些点的椭圆。
  • MATLAB中的2D与3D
    优质
    本文章介绍了在MATLAB中进行二维椭圆和三维椭球拟合的方法和技术,包括相关算法、代码实现及应用示例。 采用最小二乘法可以辨识系统模型为椭圆或椭球参数的模型,从而校正加速度传感器和地磁传感器等设备。
  • :根据给定点 (x, y) 返回最优 - MATLAB开发
    优质
    本MATLAB项目提供了一种算法,用于接收一系列二维点坐标(x,y),并计算这些点的最佳椭圆拟合。该工具可应用于图像处理和数据分析等领域,帮助用户识别数据中的椭圆形结构或模式。 用法:[semimajor_axis, semiminor_axis, x0, y0, phi] = ellipse_fit(x, y) 输入: - x - x 测量值的向量 - y - y 测量值的向量 输出: - semimajor_axis - 椭圆长轴的大小 - semiminor_axis - 椭圆短轴的大小 - x0 - 椭圆中心的 x 坐标 - y0 - 椭圆中心坐标 - phi - 相对于弧度的旋转角度 x 轴使用的算法:给定椭圆的二次形式: \[ a*x^2 + 2*b*x*y + c*y^2 + 2*d*x + 2*f*y + g = 0 \] 我们需要找到最佳(在最小二乘意义上)参数 \(a, b, c, d, f, g\)。为了将问题转化为常见的估计形式,等式两边除以\(a\), 然后把\(x^2\)移到另一边: \[ 2*b*x*y + c*y^2 + 2*d*x + 2*f*y + \frac{g}{a} = - x^2 \] 这样可以方便地进行参数估计和椭圆拟合。
  • MATLAB中的程序
    优质
    本简介介绍一个用于在MATLAB环境中进行椭圆拟合的程序。该工具旨在帮助用户通过给定的数据点集来精确地估计椭圆参数,适用于图像处理、计算机视觉等领域。 这段文字描述了一个用MATLAB编写的程序,该程序通过最小二乘法进行椭圆拟合,并最终得到椭圆的五个参数。