Advertisement

该论文研究探讨了基于改进多目标进化算法优化无线传感器网络覆盖的方法。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过运用改进的多目标进化算法对无线传感器网络进行覆盖优化的研究,方伟和闵瑞高深入探讨了无线传感器网络(Wireless Sensor Network, WSN)在区域监测任务中日益重要的作用。与此同时,如何能够对网络中存在诸多相互冲突的目标变量之间实现切实有效的权衡,成为了亟待解决的关键问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线——采用.pdf
    优质
    本文探讨了在无线传感器网络中应用改进的多目标进化算法进行网络覆盖优化的研究。通过实验验证了该方法的有效性和优越性,为提高WSN性能提供了新的思路和解决方案。 在区域监测任务中,无线传感器网络(WSN)的作用日益重要。然而,在处理网络内多个相互冲突的目标时,如何进行有效的权衡是一个挑战。为此,基于改进的多目标进化算法来优化无线传感器网络覆盖成为了一种可能的方法。这种方法旨在提高WSN在网络部署和资源配置中的效率与性能。
  • 粒子群线
    优质
    本研究提出了一种基于粒子群优化(PSO)算法的方法,旨在提高无线传感器网络(WSN)的覆盖率和节点部署效率,通过模拟自然界的群体行为来寻找最优解。此方法能够有效解决WSN中能耗不均、覆盖范围有限等问题,延长了网络寿命并提升了监测效果。 为了提升无线传感器网络的性能,我们研究了节点分布与覆盖方案,并将拟物理算法中的拟万有引力和拟库仑力原理与粒子群算法相结合,提出了一种基于惯性权重的拟物粒子群算法。这种新方法增强了全局搜索能力,能够更快地找到最优解并减少计算时间和重复覆盖现象。仿真结果显示,相较于基本粒子群以及带有惯性权重的标准粒子群算法,新的算法在全局收敛速度、覆盖率和降低重复覆盖比率方面表现更优。
  • 移动线节点MATLAB代码.md
    优质
    本文档介绍了一种利用移动网格技术改善无线传感器网络中节点覆盖效果的方法,并提供了相应的MATLAB实现代码。 【优化覆盖】移动网格求解无线传感器网络节点覆盖优化问题的Matlab源码提供了一种方法来改进无线传感器网络中的节点布局和效率。通过使用移动网格技术,可以有效解决由于静态布置带来的覆盖率不足或冗余的问题。这份代码适用于研究者和技术爱好者探索如何利用算法提高此类网络的整体性能。
  • 粒子群线-MATLAB实现
    优质
    本研究采用MATLAB平台,运用改进的粒子群算法,针对无线传感器网络提出了一种有效的节点部署策略,以增强网络覆盖效率和稳定性。 该文件包含基于粒子群(PSO)的传感器网络(WSN)优化覆盖问题的代码,并且代码有非常详细的注释,有助于大家理解相关内容。希望对大家有所帮助。
  • 【布局】利用鲸鱼行3D线(WSN)Matlab代码.md
    优质
    本文介绍了基于鲸鱼优化算法的MATLAB代码,用于改善三维无线传感器网络(WSN)的布局和覆盖效率。 基于鲸鱼算法实现3D无线传感器网(WSN)覆盖优化的Matlab源码布局优化。
  • 【布局】利用布谷鸟线(WSN)Matlab代码.md
    优质
    本Markdown文档提供了一种基于布谷鸟搜索算法优化无线传感器网络(WSN)覆盖问题的MATLAB实现方案,旨在提升WSN的部署效率和覆盖范围。 【布局优化】基于布谷鸟算法实现无线传感器网(WSN)覆盖优化的Matlab源码。
  • 3
    优质
    本研究聚焦于改进现有的多目标进化算法,旨在提高其在复杂优化问题中的性能和效率。通过引入新颖的策略和技术,进一步增强了算法的多样性和收敛性,为解决实际工程问题提供了更有效的解决方案。 ### 多目标进化算法概述与NSGA-III详解 #### 一、引言 自1990年代初以来,进化多目标优化(EMO)方法已经在解决不同类型的双目标和三目标优化问题中显示出其独特的优势。然而,在实际应用中,往往涉及到涉及四个或更多目标的复杂问题。随着对解决多目标优化问题的需求日益增长,开发能够有效处理此类问题的EMO算法变得尤为重要。本段落将重点介绍一种基于参考点的非支配排序进化算法(NSGA-III),该算法特别适用于处理具有多个目标的优化问题。 #### 二、多目标优化问题背景 在实际工程和决策过程中,经常面临需要同时优化多个目标的情况。例如,在设计一个新产品时,可能需要同时考虑成本、性能、可持续性等多个方面。这类问题通常被称为多目标优化问题。传统的单目标优化技术难以直接应用于这类问题,因为它们通常假设只有一个目标函数需要最小化或最大化。因此,发展有效的多目标优化算法至关重要。 #### 三、NSGA-III算法原理 ##### 3.1 NSGA-II简介 NSGA-II(Non-dominated Sorting Genetic Algorithm II)是Deb等人于2002年提出的一种进化算法,旨在解决多目标优化问题。它通过使用非支配排序和拥挤距离的概念来维护种群多样性,并且能够在有限的计算资源下找到接近Pareto最优前沿的一组解。 ##### 3.2 NSGA-III创新点 NSGA-III是在NSGA-II的基础上进一步发展的,主要针对处理具有四个或更多目标的优化问题。与NSGA-II相比,NSGA-III有以下几个关键改进: - **参考点的引入**:NSGA-III引入了一组预定义的参考点,这些参考点可以帮助算法更好地分散解的空间,特别是在高维目标空间中。 - **选择机制**:在每一代迭代过程中,NSGA-III根据参考点来选择下一代个体,这有助于保持种群的多样性和寻找接近Pareto前沿的解决方案。 - **适应性调整**:为了提高算法的有效性,NSGA-III还采用了一些适应性调整策略,如动态调整参考点的位置等。 ##### 3.3 NSGA-III工作流程 1. **初始化种群**:随机生成初始种群。 2. **非支配排序**:对当前种群进行非支配排序,得到不同层次的非支配解集。 3. **参考点分配**:为每个参考点分配最近的个体,确保种群覆盖整个目标空间。 4. **选择操作**:根据非支配层和参考点的距离选择下一代个体。 5. **遗传操作**:执行交叉和变异操作以生成新的后代。 6. **重复步骤2至5**,直到满足终止条件为止。 #### 四、NSGA-III的应用案例 NSGA-III已经成功应用于各种实际问题,包括但不限于: - 工程设计中的多目标优化 - 经济规划中的资源分配 - 生态系统管理中的多目标决策 #### 五、与其他算法的比较 文章中还将NSGA-III与MOEAD(Multi-Objective Evolutionary Algorithm based on Decomposition)的两个版本进行了比较。实验结果表明,尽管每个MOEAD版本在某些特定类型的问题上表现出色,但NSGA-III在处理本段落所考虑的所有测试问题时都能产生满意的结果。 #### 六、结论 NSGA-III作为一种基于参考点的多目标进化算法,特别适合解决具有多个目标的优化问题。通过引入参考点的概念,NSGA-III能够在高维目标空间中有效地探索和分散解集。该算法不仅在理论分析上表现出了优越性,而且在实际应用中也取得了显著的效果。对于那些面临多目标优化挑战的研究者和工程师来说,NSGA-III提供了一个强大的工具箱,帮助他们在复杂的决策环境中找到最优解。
  • NSGA-Ⅱ.pdf
    优质
    本文提出了一种改进的NSGA-Ⅱ算法,用于提高多目标优化问题的求解效率和精度。通过实验证明了该算法的有效性和优越性。 为解决传统多目标优化算法在处理多个子目标时不同时达到最优的问题,本段落提出了一种基于改进的非支配排序遗传算法(NSGA-Ⅱ)的方法。该方法以多目标优化遗传算法为基础,并采用多输入多输出反向传播神经网络作为适应度函数评价体系,确保算法能够快速收敛并找到全局最优解集。在建模前对实验数据进行主成分分析,以此来减少计算时间和降低算法复杂性。通过在进化过程中引入正态分布交叉算子(NDX)和改进的自适应调整变异算子,实现了多个目标的同时优化,并确保Pareto最优解集能够快速且准确地获取。 为了验证改进NSGA-Ⅱ算法的有效性和优越性,本段落使用UCI数据集进行了仿真实验。实验结果表明,在精度、收敛速度以及稳定性方面,该方法均优于其他常用多目标优化算法。
  • 线中RBS.pdf
    优质
    本文研究了无线传感器网络中的资源分配问题,提出了一种基于RBS(Resource Balancing Scheme)的优化算法,以提高网络效率和延长系统寿命。 无线传感器网络RBS的优化算法.pdf 这段文档主要讨论了针对无线传感器网络中的路由协议(RBS)进行优化的相关算法。由于原描述中并未提供具体内容或提及任何链接、联系信息,因此重写时仅保留核心内容,并未添加额外信息或修改原有意思表达。