Advertisement

基于模型预测控制的欠驱动水面舰艇轨迹追踪控制器

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于模型预测控制(MPC)的方法,用于设计欠驱动水面舰艇的轨迹跟踪控制器。通过优化算法实时调整航行路径,确保舰艇高效准确地遵循预定路线,适用于复杂海况下的自主导航任务。 基于模型预测控制的欠驱动水面舰艇轨迹跟踪控制器设计了一种用于提升欠驱动水面舰艇性能的方法,该方法利用了模型预测控制技术来实现精确的轨迹跟踪。这种方法能够有效解决传统控制系统在面对复杂动态环境时遇到的问题,提高系统的响应速度和稳定性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究提出了一种基于模型预测控制(MPC)的方法,用于设计欠驱动水面舰艇的轨迹跟踪控制器。通过优化算法实时调整航行路径,确保舰艇高效准确地遵循预定路线,适用于复杂海况下的自主导航任务。 基于模型预测控制的欠驱动水面舰艇轨迹跟踪控制器设计了一种用于提升欠驱动水面舰艇性能的方法,该方法利用了模型预测控制技术来实现精确的轨迹跟踪。这种方法能够有效解决传统控制系统在面对复杂动态环境时遇到的问题,提高系统的响应速度和稳定性。
  • 干扰拒绝(ADRC)
    优质
    本研究探讨了利用主动干扰拒绝控制(ADRC)技术优化飞艇在复杂环境中的水平轨迹追踪性能,提升了系统的鲁棒性和响应速度。 基于主动干扰抑制控制(ADRC)的飞艇水平轨迹跟踪控制系统能够有效提升飞行器在复杂环境中的稳定性和精确度。该系统通过对各种外部干扰的有效识别与补偿,确保了飞艇能够在预定航线上高效、准确地进行移动。这种方法不仅提高了系统的鲁棒性,还增强了其应对突发状况的能力,在实际应用中具有显著优势。
  • 自适应BacksteppingAUV三维
    优质
    本研究提出了一种基于自适应Backstepping方法的欠驱动自主水下车辆(AUV)三维轨迹跟踪控制策略,旨在提升其在复杂海洋环境下的航行性能和稳定性。 为了实现欠驱动自治水下机器人(AUV)的三维航迹跟踪控制,基于非完整系统理论分析了在缺少横向推进器的情况下AUV欠驱动控制系统的特点,并验证了该情况下存在加速度约束不可积性问题。利用李亚普诺夫稳定性理论和自适应Backstepping方法设计了一个连续时变的航迹点跟踪控制器,以减少外界海流对控制效果的影响。通过仿真实验表明,所提出的控制器能够使欠驱动AUV实现对于一系列三维航迹点的渐近稳定,并且该系统的精确性和鲁棒性明显优于传统的PID控制系统。
  • 双轮机.zip_
    优质
    本项目为一款专注于轨迹追踪控制的双轮机器人软件开发包。通过先进的算法实现精准定位与高效路径规划,适用于教学、科研及自动化领域应用研究。 双轮机器人轨迹跟踪控制涉及圆形和曲线运动,在Simulink中自建模型进行实现。
  • 优质
    《轨迹的追踪控制》一书聚焦于自动化系统中物体或机械手路径规划与精确运动的研究,涵盖算法设计、控制系统优化及应用实例分析。 轨迹跟踪控制船舶的MATLAB仿真程序设计
  • Lyapunov理论下航行
    优质
    本研究提出了一种基于Lyapunov稳定性理论的模型预测控制方法,专门用于优化水下航行器的轨迹跟踪性能,确保系统稳定性和鲁棒性。 本段落探讨了自主水下航行器(AUV)的轨迹跟踪控制问题,并提出了一种基于李亚普诺夫模型预测控制(Lyapunov-based Model Predictive Control, 简称LMPC)的新方法,旨在提升AUV在复杂环境中的性能。该框架能够利用在线优化技术来增强系统的追踪能力并处理诸如执行器饱和等实际约束问题。 文中详细介绍了如何通过非线性反步跟踪控制律构建收缩约束条件,确保闭环系统稳定,并提供了递归可行性的充分证明以及对吸引区域的明确描述。此外,本段落还探讨了LMPC框架中预测时域实施策略的应用,以提高系统的鲁棒性和适应能力。通过对Saab SeaEye Falcon型号AUV进行仿真测试验证了所提出的LMPC方法的有效性。 自主水下航行器(AUV)是海洋机器人领域的一项重要技术进步,在减少操作风险和成本方面展现出巨大潜力。本段落聚焦于如何通过优化控制策略来改善这类设备的性能,特别强调在设计控制器时考虑实际约束的重要性以及推力分配问题与LMPC框架结合的应用。 研究涵盖了多个关键主题: 1. AUV的基本概念及其应用。 2. 轨迹跟踪控制的概念和其重要性。 3. 李亚普诺夫稳定理论、模型预测控制(MPC)的原理及在AUV中的运用。 4. LMPC框架的设计过程,包括如何应对实际约束问题如执行器饱和等。 5. 推力分配策略的重要性及其与LMPC结合的方式。 6. 如何利用非线性反步跟踪控制律构建收缩约束条件以保证闭环系统的稳定性,并明确描述吸引区域的定义和作用范围。 7. 通过预测时域实施策略提高鲁棒性的方法论,以及这种方法对提升AUV追踪性能的意义。 最后,本段落还展示了在Saab SeaEye Falcon型号上进行仿真实验的结果,证明了LMPC框架的有效性。这些发现不仅具有重要的理论意义,在实际应用中也有广泛的前景和价值。
  • 无人系统建及PID
    优质
    本研究探讨了水面无人艇系统的建立与模拟,并深入分析了其轨迹跟踪技术以及基于PID(比例-积分-微分)控制器优化航行路径的方法。通过仿真试验验证,改进后的PID控制策略显著提升了无人艇的动态响应性能和稳定性,在复杂水域环境中的任务执行能力得到增强。 首先利用Matlab对无人艇的运动学和动力学子系统进行数字建模,并采用四阶龙格-库塔法求解AUV微分方程,以获取系统的状态信息。接下来根据所得到的状态数据及期望航迹设计PID控制器,并将其输入到系统模型中,使无人艇在该控制策略的作用下能够准确跟踪预定轨迹。
  • trackkeeping.rar_船舶_航_MATLAB船舶航
    优质
    本资源为一款针对欠驱动船舶设计的航迹控制系统,采用MATLAB进行开发与仿真。系统旨在实现复杂海况下的精确路径追踪,适用于学术研究和工程应用。 船舶航迹控制属于典型的欠驱动控制问题,在这一领域内,“轨迹跟踪”是一个关键的研究方向。
  • 驾驶汽车及MATLAB源码.zip
    优质
    本资源提供了一套基于模型预测控制(MPC)实现自动驾驶汽车路径跟踪的方案与MATLAB源代码。适用于研究和教学目的。 自动驾驶汽车技术是现代汽车行业的重要研究领域之一,其中基于模型预测的轨迹追踪与控制尤为关键。本项目旨在利用MATLAB实现通过模型预测控制(MPC)来精确地进行自动驾驶车辆的路径跟踪。 理解模型预测控制的概念至关重要:这是一种先进的控制系统策略,它依赖于系统动态行为的数学建模,并据此优化未来的系统表现,制定最优决策方案。在自动驾驶汽车的应用中,这种技术能够考虑多个时间点上的车辆状态信息,在满足各种约束条件(如速度和加速度限制)的同时实现最佳路径规划。 此项目提供的MATLAB源代码可能包含以下部分: 1. **车辆动力学模型**:这是MPC的基础组成部分,通常由一系列非线性微分方程表示。这些方程描述了汽车的速度、位置及转向角度等参数随时间的变化情况,并考虑诸如质量、转动惯量和轮胎摩擦力等因素的影响。 2. **预测建模**:根据车辆动力学模型进行未来一段时间内车辆行为的模拟,这通常需要数值求解器的支持,如四阶龙格-库塔法。 3. **优化问题设定**:定义MPC的目标函数,比如最小化与理想轨迹之间的偏差,并且考虑控制输入的各种约束条件(例如最大加速度和转向率)。 4. **控制器设计**:通过MATLAB的`fmincon`或`quadprog`等优化工具箱求解实时出现的最优化问题,以获得当前时间点的最佳控制参数值。 5. **轨迹追踪算法**:结合MPC的结果数据来动态调整车辆的速度和方向,确保其尽可能接近预设路径。 6. **仿真环境**:可能包括一个MATLABSimulink模型用于模拟不同条件下汽车的行为表现,并验证所设计的控制策略的有效性。 7. **结果分析**:代码中也可能包含部分的数据可视化功能以展示轨迹追踪的效果,如车辆的位置、速度和转向角随时间的变化情况等图表信息。 通过本项目的学习与实践,研究者或开发者能够深入理解MPC在自动驾驶领域中的应用,并探索不同控制策略对路径跟踪性能的影响。这不仅有助于理论上的探究,同时也为实际系统的开发提供了宝贵的参考价值。此外,MATLAB作为一种强大的工程计算工具,在这种复杂的控制系统设计中发挥着重要作用。
  • MATLAB脚本程序,可直接运行
    优质
    这是一款基于模型预测控制理论开发的MATLAB脚本程序,专门用于实现精确的轨迹追踪功能。用户可以轻松修改参数并直接运行,适用于学术研究和工程实践中的路径规划与控制问题解决。 运行注意事项:使用MATLAB 2021a或更高版本进行测试,并运行其中的Runme_.m文件,而不是直接运行子函数文件。在运行过程中,请确保MATLAB左侧的当前文件夹窗口设置为正确的目录。该资源涉及移动机器人的滑模轨迹控制、轨迹跟踪以及机器人路径规划中的相关技术,如滑模跟踪控制和移动机器人滑模轨迹跟踪控制方法的研究与应用。