Advertisement

采用MSP430F设计的超低功耗电子温度计方案。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究设计的超低功耗电子温度计具备精确测量和实时显示所测量的目标物体的温度的功能,并且支持灵活的扩展控制操作。该温度计集成了一个电子时钟,其测量范围限定在零摄氏度到三十摄氏度之间,并提供一摄氏度的检测分辨率。此外,它采用液晶显示屏(LCD)进行信息呈现,整个电子设备的静态功耗仅为0.5微安培(μA)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于MSP430F
    优质
    本设计采用MSP430F系列单片机,结合数字温度传感器DS1621,实现了一种能耗极低且精度较高的便携式电子温度计。 本段落介绍的超低功耗电子温度计能够通过内置的温度传感器测量并显示被测点的温度,并具备扩展控制功能。该设备配备有电子时钟,检测范围为10℃至30℃,分辨率为1℃,使用LCD液晶屏进行数据显示,整机静态功耗仅为0.5μA。
  • .pdf
    优质
    本PDF文档深入探讨了低功耗设计的原则与实践,涵盖多种电子设备及系统的节能技术,旨在为工程师提供实用的设计策略和解决方案。 《低功耗设计.pdf》介绍了如何在电子设备的设计过程中实现低能耗的目标。文档涵盖了各种有效的技术手段与策略,旨在帮助工程师优化电路、减少能源消耗,并提高产品的市场竞争力。通过详细分析现有技术和案例研究,《低功耗设计.pdf》为读者提供了深入理解并实际应用这些方法的宝贵资源。
  • 源技术中漂移和带隙基准源
    优质
    本研究专注于开发一种在电源技术中具有重要应用价值的电路——低温度漂移与低功耗特性兼备的带隙基准源,致力于提升电子设备的稳定性和能效。 0 引言 便携式电子产品在市场上的份额越来越大,对低电压、低功耗基准电压源的需求也随之增加,这使得带隙基准的设计要求显著提高。带隙基准广泛应用于数模转换器、存储器以及开关电源等混合信号电路中。基准源的稳定性对于整个系统的内部电源产生和输出电压调整具有直接且至关重要的影响。此外,理想的基准电压应能够克服制造工艺偏差、系统内部电源电压的变化及外界温度的影响。 传统的一阶补偿方法通常可以实现约10 ppm/℃的温度系数,而近年来发展起来的一些成熟的补偿技术包括二阶温度补偿、分段线性补偿和指数温度补偿等。这些新方法虽然提高了性能,但电路结构相对复杂。
  • CMOS集成传感器*(2011年)
    优质
    本文介绍了一种应用于CMOS工艺的低功耗集成温度传感器设计,详细探讨了其工作原理及优化方案。该研究发表于2011年。 为了精确测量超大规模集成电路芯片表面的温度,并监控电路工作状态及进行过热保护,采用了一种新型CMOS片上温度传感器结构。该设计首先利用两个衬底PNP管基射电压差△VBE的PTAT特性来感测温度变化,随后通过偏置电路镜像过来的PTAT电流控制一个三阶环型振荡器,产生频率与温度成正比的信号,并进一步转化为8位数字输出。该传感器采用0.13μm CMOS工艺设计,版图面积仅为0.02mm²,功耗为0.3μW(采样速率为100 sample/S)。后版图仿真结果显示,在-60℃到160℃的温度范围内测量精度达到±3.5℃。
  • 样保持分析与
    优质
    本研究聚焦于采样保持电路的低功耗技术分析与创新设计方案探索,旨在提高电路效率并减少能源消耗。 通过对两种开关电容采样保持电路的分析与比较,设计了一种低功耗采样保持电路。该电路采用电容翻转式结构、增益增强技术和栅压自举开关技术来减少运放的功耗并降低非线性失真。使用SMIC 0.18μm CMOS工艺进行设计后,仿真结果显示其SNDR为71dB,功耗仅为3.8mW,适用于10位50Ms/s流水线ADC的应用中。
  • LTC5562 混频器硬件
    优质
    LTC5562是一款高性能、低功耗混频器芯片。本文探讨其硬件设计原理与实现方法,并提供详细的电路设计方案,适用于通信系统中的射频前端模块。 LTC5562有源混频器是一款低功耗、高性能的双平衡型有源混频器,在30MHz至7GHz的宽频率范围内提供50Ω宽带匹配。该器件使用单个3.3V电源供电,额定工作电流为40mA,并且可以实现1dB的转换增益。如果需要降低功耗,则LTC5562的工作电流可调节到低至15mA的状态下运行。此外,在停用模式时,此设备仅消耗10μA的电流。 在3.6GHz频率下,该混频器具有+20dBm的OIP3值,并表现出卓越的动态性能。LTC5562结合了低功耗宽带操作、极低本地振荡泄漏和失真以及强大动态范围的特点,使其成为便携式应用及移动射频设备的理想选择。此通用混频器适用于上变频或下变频的应用场景。
  • 基于GD32模式.zip
    优质
    本设计文档探讨了在GD32微控制器上实现低功耗模式的方法和策略,旨在降低能耗的同时确保系统的稳定运行。适合需要优化电池寿命的应用场景。 当设备全速运行时,LED会闪烁大约10秒后停止闪烁,此时已进入低功耗模式。如果再次按下唤醒按键,LED将继续闪烁。
  • UPF
    优质
    低功耗UPF(Unified Power Format)设计是一种用于集成电路中的电源管理技术,通过优化芯片内部模块的工作状态来降低能耗,提高能效比。此方法在保证性能的同时显著减少能量消耗,延长设备运行时间,并有助于减小电子产品的环境影响。 UPF低功耗设计是利用统一电源格式(Unified Power Format, UPF)进行的低能耗电路设计方法和技术。作为IEEE1801标准的一部分,UPF旨在减少ASIC设计中的电力消耗,成为继速度与面积之后IC设计中不可或缺的一个维度。 目前存在多种降低芯片功耗的方法,如减小工作电压、控制漏电流、调整运行频率以及优化电容使用等。采用基于IEEE1801的UPF进行低能耗电路的设计流程包括描述低能耗意图,并借助Synopsys公司的相关解决方案完成设计实现与验证等工作。 利用UPF实施低功耗设计的优势在于可以有效降低芯片的整体电力消耗,减少产生的热量并提高设备运行时长和可靠性。这使得它特别适用于对电池寿命有高要求的手持电子装置市场的需求。 一个完整的UPF低能耗电路设计流程涵盖描述意图、实际构建、验证及制造测试等环节,在这些阶段中都需要运用到UPF规范与Synopsys的解决方案来完成相应的任务。 这种技术广泛应用于移动设备,服务器环境,数据中心以及智能家居等领域。通过应用该方法能够满足上述场景对高效能电池管理的需求,并提升产品性能和用户体验度。 在实践中实施UPF低能耗设计时会遇到一些挑战如如何准确表达节能目标、实现具体的节约措施及确保验证环节的准确性等问题。同时还需要权衡设计方案复杂性与制造可靠性的关系,以达到最佳效果。 总的来说,UPF低功耗技术是IC领域的一项关键技能,其主要功能在于减少芯片能耗并提升设备的工作效率和稳定性。设计过程严格遵循IEEE1801标准,并通过Synopsys的解决方案来完成整个流程中的各个步骤。
  • 关于MTR5012B125K射频与应-
    优质
    本文介绍了MTR5012B在125K频率下的低功耗射频电路设计方案及其实际应用,详细探讨了其技术特点和优势。 MTR5012b射频芯片概述:MTR5012b是一款标准的125K非接触卡读写器芯片,内置独立的接收放大和数字解调电路、时钟电路及复位电路。该芯片能够读取ID card的UID,并且具有多种可配置的数字接口,适用于需要读取UID的各种场合。此外,它还拥有非常低的待机功耗(0.5uA@5V)。 特性包括: - 低功耗模式:0.5uA@5V - 内置收发定时器 - 内置接收放大电路,外围器件少 - 外部时钟4MHz,可采用晶体振荡器 - 支持UART和维根主动输出,并支持被动读取UID功能 - 兼容3.3V/5V电压环境 - 采用TSSOP20封装,占用面积小 该款产品应用广泛,在门禁、考勤机、电子锁及桑拿锁等领域都有广阔的应用空间。
  • 基于LTC3388-1能量
    优质
    本简介介绍了一种基于LTC3388-1芯片设计的低功耗能量采集电路,旨在高效地收集和管理环境中的微小能量。该电路适用于无线传感器网络、远程监测等应用场景,具有高集成度、宽输入电压范围及多种输出模式等特点,有效延长了设备的工作寿命并降低了维护成本。 在全球范围内,我们周围存在着丰富的环境能源。传统的能量收集方法主要应用于太阳能板和风力发电机等领域。然而,现在还出现了许多新型工具可以从各种环境中获取电能。这些新方法的重点不在于提高电路的能量转换效率,而是更关注于能够为电路提供“平均收集到的”总能量量。