Advertisement

CPU实现通过深度强化学习的人类级别控制能力

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用深度强化学习技术,使CPU能够掌握类似人类的游戏控制技巧,实现了在复杂环境下的高效决策与智能操作。 这是别人用CPU来运行《Human-level control through deep reinforcement》一文中代码的一个实例,所玩的游戏是打砖块(breakout)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CPU
    优质
    本研究利用深度强化学习技术,使CPU能够掌握类似人类的游戏控制技巧,实现了在复杂环境下的高效决策与智能操作。 这是别人用CPU来运行《Human-level control through deep reinforcement》一文中代码的一个实例,所玩的游戏是打砖块(breakout)。
  • 采用机器运动
    优质
    本研究探索了利用深度强化学习技术优化机器人运动控制的方法,通过模拟环境训练模型,实现了更高效、灵活且适应性强的机器人动作规划与执行。 强化学习范式原则上允许复杂行为直接从简单的奖励信号中进行学习。然而,在实际应用中,通常需要手工设计特定的奖励函数以促进某些解决方案或从演示数据中推导出奖励机制。本段落探讨了如何通过丰富环境来推动复杂行为的学习过程。我们明确地在不同的环境中训练代理,并发现这有助于它们形成一系列任务中的稳健表现。 具体而言,我们在运动领域展示了这一原则的应用——这是一个众所周知的行为对奖励选择敏感的案例。在一个平台上,我们使用简单的奖励函数培训多个模拟物体,在此过程中设置各种具有挑战性的地形和障碍物以测试其向前进展的能力。通过采用一种新的可伸缩策略梯度变体强化学习方法,我们的代理能够在没有明确基于奖励指导的情况下学会跑步、跳跃、蹲下以及转身等动作。 有关这种行为的学习过程的视觉描述可以在相关视频中查看。
  • 基于信号时序
    优质
    本研究采用深度强化学习技术优化城市交叉路口的交通信号控制系统,以实时调整信号时序,有效缓解交通拥堵,提高道路通行效率。 通过深度强化学习优化交通信号时间的最新研究显示,可以构建一个专门用于控制交通信号的强化学习系统。在这个系统中,将由信号机、检测器组成的交通控制系统视为“智能体”,而人车路环境则被视为“环境”。具体操作流程为:传感器从环境中收集观测状态(例如车辆流量、行驶速度和排队长度等信息),并将这些数据传递给信号机;信号控制系统根据接收到的状态选择最优动作执行,比如保持当前相位的绿灯或切换到红灯。系统还会对所采取行动的效果进行反馈评价,如使用排队长度作为回报函数来衡量效果,并据此调整评分系统的参数设置。这一过程形成一个闭环循环,在实践中不断学习和改进交通信号控制策略。
  • 自适应机器算法.zip_matlab simulink__机器
    优质
    本资源包含运用Matlab Simulink平台进行强化学习在自适应机器人控制系统中的实现方法,旨在探索并优化机器人的自主决策能力。 结合强化学习与自适应控制技术设计了智能机器人的控制系统,使机器人具备自主学习能力,并展示了其实用性和有效性。
  • A2C算法
    优质
    简介:本文探讨了在决策过程中运用深度强化学习技术实现A2C(Advantage Actor-Critic)算法的方法,通过实验验证其有效性和优越性。 本段落将详细介绍如何在Google Colab环境中实现A2C(Advantage Actor-Critic)算法,包括其实现要点、模型构建方法、虚拟环境交互步骤、模型训练过程以及信息监控技术,并亲测其运行效果。
  • :若干RL算法
    优质
    本书《深度强化学习:若干深度RL算法的实现》深入浅出地介绍了多种深度强化学习算法,并提供了详细的代码示例,帮助读者更好地理解和应用这些先进的机器学习技术。 DeepRL 一些深度强化学习算法的实现要求使用Python版本小于等于3.6,并且需要安装Torch 1.0、TensorFlow 1.15.2以及Gym等相关库。此外,还有一些相关的研究论文可供参考。
  • 基于信号系统.pdf
    优质
    本文探讨了一种利用深度强化学习技术优化城市交通信号控制的方法,旨在提升道路通行效率与减少交通拥堵。通过智能算法调整红绿灯时序,以适应实时交通流量变化,有效提高交通流畅度和安全性。 基于深度强化学习的交通信号灯控制研究旨在创新现有的交通信号控制系统,并利用深度学习模型的强大数据处理能力来应对非线性和时间序列性问题。 1. 交通信号灯控制挑战:随着城市的发展和对交通工具需求的增长,交通拥堵、事故率上升等问题日益严重。传统的SCATS、SCOOT等系统无法有效解决随机事件的响应难题,也无法考虑多个交叉口间的强耦合关系,导致整体路网优化难以实现。 2. 深度学习在信号灯控制中的应用:深度学习模型擅长处理非线性和时序性强的问题,并适合于交通数据的分析和预测。本研究提出了一种基于深度强化学习的新型控制系统,采用深度学习技术来预测未来交通状况并据此调整信号配时。 3. 深度强化学习原理:该方法结合了强化学习与深度学习的优势,通过模拟决策过程进行策略优化。其中DDPG(Deep Deterministic Policy Gradient)模型被用于本研究中,它将确定性策略梯度和深度学习相结合,并特别适用于连续型控制任务如信号灯时长调整。 4. RNN及LSTM的应用:循环神经网络能够处理序列数据,适合于分析交通状况的时间依赖特性;而改进后的LSTM则能更好地利用历史信息解决长时间的预测问题。本研究中首先使用了基于RNN和LSTM的组合模型来预测未来情况,并将结果输入到DDPG系统以做出相应的控制决策。 5. 预测与决策结合:通过对未来的交通情况进行准确预报,再经由深度强化学习算法进行信号灯配时优化,这一机制能够显著提高系统的响应速度及处理突发状况的能力。 6. 仿真测试验证:为了评估新提出的控制系统的效果,研究人员使用了开源的交通数据集来模拟真实环境,并利用这些信息对系统进行了全面测试以确保其有效性和合理性。 7. 系统优势:对比传统方法及其他深度强化学习方案,本研究开发的方法具有更高的实时性与灵活性,在应对突发状况和处理路口间强耦合关系方面表现更佳。同时通过预测模型的辅助训练提升了决策网络解决问题的能力。 8. 结论:这项基于深度强化学习技术的研究展示了交通信号控制智能化的可能性,并为解决城市中的交通拥堵问题开辟了新路径,对智能交通系统的未来发展具有重要参考价值。
  • Snake-AI:训练Snake游戏
    优质
    Snake-AI是一款基于经典Snake游戏开发的人工智能项目。利用深度强化学习技术,AI能够自主学习并优化其游戏策略,在没有人为干预的情况下不断提升蛇的存活时间和得分。 Snake-AI:使用深度强化学习训练的Snake游戏。