Advertisement

南邮离散数学实验完整源码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目包含南京邮电大学离散数学课程的所有实验源代码,适用于学习和参考,帮助学生更好地理解和掌握相关概念及应用。 这是我所有的离散数学的源码,在自己做的时候遇到了一些难题,但当时没有人可以请教,因此我把资源上传上来,希望能给大家提供参考。不过我非常希望大家不要直接打印源码交给老师使用,这样没有实际效果。态度决定一切!

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目包含南京邮电大学离散数学课程的所有实验源代码,适用于学习和参考,帮助学生更好地理解和掌握相关概念及应用。 这是我所有的离散数学的源码,在自己做的时候遇到了一些难题,但当时没有人可以请教,因此我把资源上传上来,希望能给大家提供参考。不过我非常希望大家不要直接打印源码交给老师使用,这样没有实际效果。态度决定一切!
  • 据结构
    优质
    该资源包含南京邮电大学数据结构课程所有实验项目的完整源代码,适用于学习和参考,帮助学生更好地理解和掌握数据结构的相关知识与应用。 数据结构是计算机科学中的核心课程之一,它探讨了如何有效地存储和组织数据以实现高效访问与操作。在“南邮数据结构试验全部源码”这一压缩包中,包含了南京邮电大学(南邮)四次实验的完整代码资源。这些实验旨在帮助学生深入理解和应用各种基本的数据结构及其相关算法。 第一次实验通常从基础的数据结构开始,例如线性表。线性表可以采用顺序存储方式(如数组)或链式存储方式(如链表)。数组是一种静态数据结构,在内存中连续存放元素,便于随机访问,但插入和删除操作较为复杂。相反地,链表中的元素可以在内存的任意位置通过指针连接起来,这使得在执行插入和删除操作时更加灵活便捷,然而其访问速度相对较慢。 第二次实验可能会涉及到栈与队列这两种数据结构。其中,栈是一种后进先出(LIFO)的数据结构,在函数调用、表达式求值等场景中被广泛应用;而队列则为先进先出(FIFO),在任务调度和打印队列等领域有着广泛的应用。 第三次实验可能包括树形结构的学习内容,例如二叉树及平衡树。其中,二叉树是最简单的类型之一,每个节点最多有两个子节点;而为了维持查找效率的平衡性设计,则有如AVL树或红黑树等类型的平衡树被提出并应用,以确保其平均时间复杂度为O(logn)。 第四次实验可能会聚焦于图及其算法的学习。此类非线性的数据结构由顶点和边组成,并适用于表示实体间的关系,涉及的典型算法包括但不限于最短路径(如Dijkstra或Floyd-Warshall),拓扑排序以及最小生成树(Prim或Kruskal)等。 这些源代码不仅为学习者提供了实践操作的机会来理解数据结构的概念,更是帮助其在实际编程环境中应用所学知识的重要资源。它们有助于学生了解如何利用不同的数据结构解决具体问题,例如使用栈实现括号匹配、二叉搜索树进行高效查找以及图算法处理网络路由等问题。 重要的是要强调这些源码应仅作为参考和学习的辅助材料,并非直接抄袭的对象。编程能力的发展依赖于个人的理解与创新精神而非简单的复制模仿。唯有通过独立思考及实践,才能真正掌握相关知识并提升自己的编程技能,从而达到更高的学术或职业水平。因此,在使用这些资源时,请遵循学术诚信的原则尊重原创性,基于现有资料进行学习和改进工作。
  • 一(包含GUI的程序)
    优质
    本实验为南京邮电大学离散数学课程的一部分,旨在通过编程实践加深学生对离散结构的理解。同学们将设计并实现一个具备图形用户界面(GUI)的程序,增强算法与数据结构的应用能力。 离散数学是计算机科学中的基础学科,它涵盖了集合论、图论、逻辑、组合数学以及相关的理论内容。“DiscreteMathProgram:南邮离散数学 实验一(含GUI)”项目结合了编程实践与离散数学的实验研究。该项目使用C++作为后端处理主要逻辑,并通过WPF(Windows Presentation Foundation)用C#实现前端界面,这种分层设计使得程序结构清晰、易于维护和扩展。 C++是一种强大的通用编程语言,特别适合处理复杂的算法和数据结构,在解决离散数学问题时尤为重要。在实验一中,C++可能被用来实现集合操作、图的遍历、逻辑推理或计数等问题相关的概念。面向对象特性使得代码能够按照离散数学抽象的概念进行组织,提高了可读性和复用性。 WPF是.NET Framework的一部分,用于构建丰富且交互式的用户界面。通过C#可以方便地创建美观并功能丰富的图形用户界面(GUI),提供良好的用户体验。在离散数学程序中,GUI可以展示计算结果、接受用户输入、呈现图表或图形表示,使用户能够直观理解和操作这些概念。 实验中展示了跨语言的协同工作:C++负责处理复杂的算法和数据结构运算,而C#专注于构建交互式前端界面。这种架构充分利用了两者的优点:C++的效率与C#的易用性。 虽然具体的实验内容未详细说明,但可以想象该实验可能包括以下部分: 1. 集合操作:实现集合的基本运算(交、并、差等),以及可视化子集和等势关系。 2. 图论:绘制图,并使用遍历算法(深度优先搜索或广度优先搜索)、最小生成树、最短路径等问题进行操作。 3. 逻辑推理:布尔代数的实现,命题逻辑与谓词逻辑的推理,可能包括证明助手功能。 4. 数学证明:递归和归纳法等数学方法的应用及模拟。 5. 组合问题:解决排列组合以及鸽巢原理应用等计数问题。 尽管没有具体代码或编译配置详细信息,但根据项目描述,“DiscreteMathProgram”是一个理论知识与编程实践相结合的优秀示例,对于学习离散数学和提升编程技能都非常有帮助。
  • :匈牙利算法的与报告
    优质
    本课程项目聚焦于应用离散数学中的经典匈牙利算法解决匹配问题。通过编写完整的代码实现,并撰写详细的实验报告分析算法性能及应用场景,旨在加深对理论知识的理解和实践能力的培养。 南航大二上学期xm老师离散数学课实验——匈牙利算法完整代码及报告
  • 与参考代.pdf
    优质
    《离散数学实验指南与参考代码》是一本结合理论与实践的教学辅助资料,旨在通过丰富的实验案例和编程练习加深学生对离散数学概念的理解。书中不仅提供了详尽的操作步骤指导,还包含了大量的源代码示例,帮助读者更好地掌握相关算法的实现方法和技术细节。 关于集合、命题逻辑表达式、关系以及函数的相关实现程序编辑代码。
  • 电大习题课
    优质
    《南京邮电大学的离散数学习题课》是一本专为南邮学生编写的辅助教材,旨在帮助学生深入理解离散数学的概念与应用,并通过丰富的习题巩固所学知识。 南京邮电大学的数学实验课程包括离散数学实验。学生们在这一过程中能够深入理解和应用离散数学的相关概念与理论。通过具体的实践操作,学生可以更好地掌握知识,并将其应用于实际问题中。学校为这些实验提供了必要的资源和支持,帮助同学们取得良好的学习成果。
  • 图论
    优质
    《图论实验》是离散数学课程中的一个重要组成部分,旨在通过一系列实践操作加深学生对图的基本概念、性质及算法的理解和应用。 编写以下程序: 1. 编写一个程序以输入图、一对顶点及通路长度为参数,输出这两点间具有指定长度的路径数量。 2. 利用图的关联矩阵编程实现节点合并,并展示合并后的新关联矩阵。 3. 设计一个程序接收图作为输入,然后计算并显示每个顶点的度数。 4. 编写代码处理有向图,输出每一点的出度和入度信息。 5. 再次编写一个程序用于确定给定长度下两定点之间的路径数量。此任务与第一个提到的任务相似但可能需要不同的实现方法或优化策略来提高效率。 6. 使用Warshall算法开发求解可达性矩阵的程序,该矩阵可以显示图中各顶点间的连通情况。 7. 创建一个能够判断输入图形是否为欧拉图的程序,并在确认是欧拉图时输出其对应的欧拉回路。
  • 报告
    优质
    本《离散数学实验报告》汇集了学生在离散数学课程中的实验项目和研究成果,内容涵盖数理逻辑、集合论与图论等领域的实践操作与理论探索。 离散数学实践报告涵盖了关系矩阵及其性质、逆与闭包的概念以及极大相容类的分析,并附有源代码及调试截图。
  • 资料.zip
    优质
    《离散数学实验资料》是一份包含多种实践练习和项目的研究资源包,旨在帮助学生深入理解和应用离散数学的概念与理论。 离散实验一:真值计算 实验二:关系性质判断 实验三:关系闭包计算 实验四:计算两结点间长度为m的路径数目 实验五:最小生成树构造 实验六:最优树构造 实验八:群的判定