
差分放大器在模拟技术实验中的原理分析
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本篇文章深入探讨了差分放大器的基本工作原理及其在模拟电子技术实验中的应用。通过理论解析与实践操作相结合的方式,详细阐述其重要性及使用技巧,并提供了具体的实验步骤和案例分析,旨在帮助读者更好地理解和掌握这一关键技术。
差分放大器是模拟电子技术中的重要组成部分,在处理双端输入信号时能有效抑制共模干扰并提升信号质量。本实验以一个具体的差分放大电路为例,深入探讨其工作原理及主要性能指标。
该差分放大器由V1和V2两部分组成,这两部分都是参数相同的共射放大电路。当11接12时,形成经典的差分式结构。调零电位器RP在此过程中扮演关键角色,它调整V1和V2管的静态工作点,在没有输入信号(Ui=0)的情况下使双端输出电压(UO)为零,从而消除偏置误差。
发射极电阻Re在电路中具有特殊作用:对于差模信号,Re不产生负反馈效应,因此不影响差模电压放大倍数;然而对共模信号,则提供一个负反馈路径以减少零点漂移并稳定静态工作点。若用晶体管恒流源替代Re(例如11接13),可进一步增强电路抑制共模信号的能力,因为恒流源提供更稳定的电流供应。
接下来是关于静态工作点估算的讨论。这是确保放大器正常工作的基础步骤,需要根据晶体管特性曲线和相关参数进行计算以确定无输入时的工作状态(包括基极电流、集电极电流及发射极电压等)。
差模电压放大倍数AUD是评价差分放大器性能的重要指标之一,在Re足够大或使用恒流源电路的情况下主要由输出电路决定。理论上,当假设Re无穷大且RP位于中心位置时,双端输出的AUD与共模电压放大倍数AUC相等;但实际操作中由于元件不对称性存在一定的残余值。
另一个重要参数是共模抑制比KCMR,它定义为差模信号放大能力(AUD)与共模噪声抑制能力(AUC)之比。较高的KCMR表示电路对共模干扰的抑制效果更好且对差模信号放大的准确性更高。
实验中可通过输入直流或交流信号来分析和验证其性能,如使用频率为1kHz的正弦波进行测量以获取输出幅度变化的数据。图示提供的具体连接方式及元件配置有助于实际操作与研究。
通过独特的电路设计与元件组合,差分放大器实现了对差模信号的有效放大以及共模噪声的有效抑制,在信号处理、数据采集系统和通信设备等领域广泛应用。理解其工作原理及其性能指标对于模拟电路的设计和故障排查至关重要。
全部评论 (0)


