Advertisement

无人艇避障控制系统,采用深度强化学习DQN算法(matlab实现)。

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用深度强化学习(DQN)算法构建的无人艇避障控制系统(基于MATLAB),该系统包含了无人艇的建模工作、巡逻艇的建模以及相应的DQN代码实现。详细的代码和相关信息可查阅

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于DQN中的应MATLAB
    优质
    本研究利用MATLAB平台,采用基于DQN的深度强化学习算法,探讨其在无人艇自主避障控制系统中的优化与实现,显著提升航行安全性与效率。 基于深度强化学习DQN的无人艇避障控制包括无人艇建模、巡逻艇建模以及DQN代码实现。相关细节可参考博客中的详细介绍。
  • DQN——
    优质
    DQN是一种基于深度学习的强化学习算法,通过使用神经网络作为Q函数的参数化表示,有效解决了连续状态空间下的决策问题,在 Atari 游戏等多个领域取得了突破性成果。 本段落介绍了一种将深度学习与强化学习相结合的方法,旨在实现从感知到动作的端对端学习的新算法。在传统的Q-learning方法中,当状态和动作空间是离散且维度较低时,可以使用Q-Table来存储每个状态行动对的Q值;然而,在处理高维连续的状态和动作空间时,使用Q-Table变得不切实际。通常的做法是将更新Q-Table的问题转化为其他形式解决。
  • DQN——
    优质
    DQN(Deep Q-Network)是深度强化学习中的重要算法,它结合了深度神经网络与Q学习,能够有效解决复杂环境下的决策问题。 本段落介绍了一种结合深度学习与强化学习的方法,用于实现从感知到动作的端对端学习的新算法。在传统的Q-learning方法中,当状态和行动空间为离散且维度不高时,可以使用Q-Table来存储每个状态-行为组合的Q值;然而,在面对高维连续的状态或行动空间时,使用Q-Table变得不再实际可行。 通常的做法是将更新Q表的问题转化为一个函数逼近问题。这种方法可以通过调整参数θ使预测得到的Q函数尽可能接近最优解。深度神经网络能够自动提取复杂的特征表示,因此在处理状态和动作维度较高的情况下,采用深度学习方法来近似Q值显得尤为合适。这种结合了深度学习与强化学习的方法被称为DRL(Deep Reinforcement Learning)。
  • 基于PyTorch的TurtleBot3
    优质
    本研究提出了一种基于PyTorch框架的深度强化学习方法,用于指导TurtleBot3机器人自主避开障碍物。通过智能算法优化路径规划,提高机器人的环境适应性和导航精度。 关于turtlebot3的强化学习避障研究,包括DQN、DDPG、PPO以及SAC算法的应用。我曾使用过DQN,并发现了一些需要调整的地方:首先路径代码需根据个人实际情况进行更改;其次神经网络输入的数量应与雷达接收到的数据维度相匹配;再者存储空间大小的设定也需要注意,其大小应该是两倍于输入数据量加上奖励和动作数据的总和。此外,该代码适用于其他环境及类似配置的小车系统。
  • 的机器运动
    优质
    本研究探索了利用深度强化学习技术优化机器人运动控制的方法,通过模拟环境训练模型,实现了更高效、灵活且适应性强的机器人动作规划与执行。 强化学习范式原则上允许复杂行为直接从简单的奖励信号中进行学习。然而,在实际应用中,通常需要手工设计特定的奖励函数以促进某些解决方案或从演示数据中推导出奖励机制。本段落探讨了如何通过丰富环境来推动复杂行为的学习过程。我们明确地在不同的环境中训练代理,并发现这有助于它们形成一系列任务中的稳健表现。 具体而言,我们在运动领域展示了这一原则的应用——这是一个众所周知的行为对奖励选择敏感的案例。在一个平台上,我们使用简单的奖励函数培训多个模拟物体,在此过程中设置各种具有挑战性的地形和障碍物以测试其向前进展的能力。通过采用一种新的可伸缩策略梯度变体强化学习方法,我们的代理能够在没有明确基于奖励指导的情况下学会跑步、跳跃、蹲下以及转身等动作。 有关这种行为的学习过程的视觉描述可以在相关视频中查看。
  • DQN列的论文
    优质
    本论文深入探讨了基于DQN(Deep Q-Network)的深度强化学习方法,通过结合神经网络与传统Q-learning算法,提升了智能体在复杂环境中的决策能力。 深度强化学习系列论文涵盖了从基础的DQN到其模型与算法的各种改进版本,还包括分层DRL以及基于策略梯度的深度强化学习等内容。这些论文大多来自顶级会议。
  • 超详细的PytorchDQN源码解析(
    优质
    本篇文章深入剖析了使用PyTorch框架实现DQN算法的过程,并详细解释了深度强化学习中的关键技术点和代码细节。 基于Pytorch实现的深度强化学习DQN算法源代码包含超详细的注释,并已在多个项目中得到实际应用。该代码主要由两个文件组成:(1)dqn.py,实现了DQN智能体结构、经验重放池、Q神经网络和学习方法等;(2)runner.py,使用dqn.py中的智能体与环境进行交互并最终学会仿真月球车着陆游戏。
  • 基于MATLAB.zip
    优质
    本资源为基于MATLAB开发的深度强化学习控制系统的代码和文档集合,适用于自动化、机器人技术等领域中的智能控制研究与应用。 深度学习是机器学习的一个分支领域,它基于人工神经网络的研究成果,并利用多层次的神经网络进行复杂的学习与模式识别任务。这一技术对于图像及语音识别、自然语言处理以及医学影像分析等众多应用至关重要。 1. **神经网络**:它是构建深度学习模型的核心结构,包括输入层、隐藏层和输出层,每一层级由多个神经元构成,并通过权重连接来实现信息传递。 2. **前馈神经网络**:这是一种最常见类型的神经网络,在这种架构中,数据从输入端流向隐藏层并最终到达输出端。 3. **卷积神经网络(CNNs)**:该类型特别适用于图像处理任务。它利用特定的卷积操作来捕捉和提取图片中的关键特征信息。 4. **循环神经网络(RNNs)**:这类模型能够有效应对序列数据,如时间序列或自然语言文本等。它们的独特之处在于具备记忆功能,可以捕获并理解输入数据的时间相关性。 5. **长短期记忆网络(LSTM)**:作为RNN的一种变体,LSTMs通过引入特殊的门机制来更好地处理长期依赖问题,在复杂的时间序列预测任务中表现出色。 6. **生成对抗网络(GANs)**: 由两个相互竞争的神经网络组成——一个负责数据生成而另一个则评估其真实性。这种架构在图像合成和风格迁移等应用领域取得了重大突破。 7. **深度学习框架**:例如TensorFlow、Keras以及PyTorch,这些工具包简化了模型的设计与训练过程,并提供了丰富的功能支持。 8. **激活函数**:包括ReLU(修正线性单元)、Sigmoid及Tanh等功能,在神经网络中引入非线性特性以增强其表达能力。 9. **损失函数**:用于衡量预测值和真实标签之间的差距,常见的有均方误差(MSE)与交叉熵(Cross-Entropy)等方法。 10. **优化算法**:如梯度下降、随机梯度下降(SGD)及Adam等技术被广泛应用于调整模型参数以最小化损失函数。 11. **正则化策略**:例如Dropout和L1/L2范数约束,可以有效防止过度拟合现象的发生。 12. **迁移学习(Transfer Learning)**: 利用在某个任务上已经训练好的网络架构来改进另一个相关问题的学习效果。这种方法能够显著提高模型的泛化能力和效率。 尽管深度学习已经在多个领域取得了令人瞩目的成就,但它仍面临诸如对大量数据的需求、解释性差以及计算资源消耗大等问题与挑战。研究人员正在积极探索新的方法以解决这些问题并推动该领域的进一步发展。
  • A2C
    优质
    简介:本文探讨了在决策过程中运用深度强化学习技术实现A2C(Advantage Actor-Critic)算法的方法,通过实验验证其有效性和优越性。 本段落将详细介绍如何在Google Colab环境中实现A2C(Advantage Actor-Critic)算法,包括其实现要点、模型构建方法、虚拟环境交互步骤、模型训练过程以及信息监控技术,并亲测其运行效果。