Advertisement

ST_LSM6DS3六轴传感器(三轴加速度计+三轴陀螺仪)中文学术指南及官方数据手册.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源包提供ST_LSM6DS3六轴传感器的中文学术指南和官方数据手册,包含三轴加速度计与三轴陀螺仪技术文档,适用于传感器应用开发和技术研究。 LSM6DS3是ST公司推出的一款iNEMO六轴惯性传感器模块(包含3D数字加速度计和3D数字陀螺仪)。文档包括中文应用笔记和官方数据手册,旨在为使用该芯片开发产品的用户提供参考。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ST_LSM6DS3(+).rar
    优质
    本资源包提供ST_LSM6DS3六轴传感器的中文学术指南和官方数据手册,包含三轴加速度计与三轴陀螺仪技术文档,适用于传感器应用开发和技术研究。 LSM6DS3是ST公司推出的一款iNEMO六轴惯性传感器模块(包含3D数字加速度计和3D数字陀螺仪)。文档包括中文应用笔记和官方数据手册,旨在为使用该芯片开发产品的用户提供参考。
  • STM32F103 控制下的 MPU6050 应用(含
    优质
    本项目详细介绍如何在STM32F103控制器上连接并使用MPU6050六轴传感器,涵盖三轴加速度计和三轴陀螺仪的数据读取及处理。 MPU6050六轴传感器(三轴加速度+三轴陀螺仪)单片机实验代码适用于STM32F103系列单片机。
  • GY-80
    优质
    GY-80是一款集成了三轴陀螺仪和三轴加速度计的模块,用于测量角速度和姿态变化,广泛应用于机器人、无人机及各类运动跟踪系统中。 GY-80 9轴陀螺仪的51程序代码已测试可用。
  • 的区别
    优质
    本文介绍了三轴和六轴陀螺仪之间的区别。通过分析它们的功能、应用以及性能指标,帮助读者更好地理解这两种传感器的特点及其在不同场景下的使用优势。 陀螺仪是一种用于感知并维持方向的装置,基于角动量守恒原理设计而成。它的主要构造包括一个位于轴心可以旋转的轮子。当这个轮子开始高速旋转后,由于其角动量的存在,陀螺仪会表现出抗拒改变方向的趋势。这种特性使得它在导航和定位系统中得到广泛应用。 1850年,法国物理学家福柯为了研究地球自转现象时首次发现了这一原理:在一个快速旋转的物体(即转子)中,由于惯性作用其旋转轴总是指向固定的方向不变。他使用了希腊语“gyro”(意为旋转)和“skopein” (意指观察或观看),将这种装置命名为陀螺仪。 那么三轴与六轴陀螺仪之间有何区别呢?接下来我们来探讨一下这个问题。
  • STM32F103C8T6控制MPU6050的代码
    优质
    本项目介绍如何使用STM32F103C8T6微控制器通过I2C接口读取MPU6050三轴陀螺仪和加速度计的数据,提供示例代码以实现数据采集功能。 STM32F103C8T6驱动MPU6050三轴陀螺仪和加速度模块的源码。
  • 优质
    单轴陀螺仪传感器是一种用于检测和测量角速度变化的电子设备,广泛应用于导航系统、智能手机和平衡车中,提供精准的姿态感知。 单自由度陀螺仪是一种自转轴仅具有一个进动自由度的设备,它采用压电石英材料作为基底,并利用微机电系统(MEMS技术)制造惯性敏感元件来测量旋转角速度。由于使用了这种特定材料并简化了敏感元件的设计,在长时间工作和温度变化的情况下,该陀螺仪仍能保持极高的稳定性和可靠性。
  • 优质
    三轴加速度计传感器是一种能够测量物体在三个维度上的加速度变化的电子设备,广泛应用于运动监测、汽车安全气囊系统及游戏手柄等领域。 三轴加速度传感器在多种实验应用中有重要作用,例如智能小车、自主飞机等领域。该传感器的原理是通过检测物体沿三个相互垂直方向上的加速度变化来实现对运动状态的精确测量与控制。
  • 优质
    简介:三轴加速度传感器是一种能够测量物体在三个维度上加速度变化的电子器件,广泛应用于智能手机、游戏机和运动设备中,用于检测方向、倾斜度及移动状态。 在现代科技领域,传感器技术发挥着至关重要的作用,在众多类型的传感器中,三轴加速度计尤为突出。2GY-521 MPU6050是一款结合了三轴加速度计与电子陀螺仪的六自由度(6DOF)模块,能够为各种设备提供精确的运动和姿态数据,并广泛应用于机器人、无人机、虚拟现实设备以及智能手机等领域。 MPU6050是美国InvenSense公司开发的一款集成微处理器单元。它集成了三轴加速度计与三轴陀螺仪,并配备了数字运动处理器(DMP),能够处理复杂的运动数据。这款芯片使得在小型低功耗的设备上实现高精度的运动追踪成为可能。 作为核心组件,三轴加速度计可以测量物体沿X、Y、Z三个正交方向上的加速度变化。通过检测重力作用下的加速度,该传感器能推算出相对于地球的方向角度,在需要确定设备方位的应用中尤为重要。例如,在智能手机上,它使手机能够感知用户的手势改变并自动调整屏幕显示。 电子陀螺仪则用于测量物体的旋转速率,并分别在三个轴独立工作来检测角速度变化。结合加速度计提供的数据,陀螺仪可以提供更准确的动态角度信息,这对于实时跟踪设备运动轨迹的应用至关重要,如无人机导航或游戏控制器等场景不可或缺。 2GY-521 MPU6050模块通常配备完整的硬件接口(例如I2C或SPI),方便与微处理器进行通信。开发者通过这些接口读取传感器数据,并利用DMP功能实现更复杂的运动分析任务,包括姿态解算、步数计算等高级应用。 关于这款芯片的详细资料如数据手册和示例代码可以供开发人员深入理解其工作原理并掌握配置方法,以在项目中充分发挥它的潜力。总结而言,2GY-521 MPU6050三轴加速度计与电子陀螺仪模块提供了强大的运动感知解决方案,在众多领域有着广泛的应用前景和技术深度。无论是硬件工程师还是软件开发者都能从这款传感器的学习和应用实践中受益匪浅,并通过创新设计满足市场需求推动智能设备的进步和发展。
  • STM32硬件I2C读写MPU6050
    优质
    本项目详细介绍了如何使用STM32微控制器通过硬件I2C接口实现对MPU6050六轴传感器的数据读取和配置,涵盖陀螺仪及加速度计的集成应用。 本案例展示了如何使用STM32的硬件I2C外设与MPU6050陀螺仪及加速度传感器进行通信,并将实时数据在OLED屏幕上显示出来。屏幕顶部展示设备ID号,左下角分别显示出X轴、Y轴和Z轴的加速度值;右下方则显示同样三个维度上的角速度值。当调整MPU6050的姿态时,这些数值会相应变化。 在此场景中,STM32作为主机而MPU6050为从机,形成了一主一从的通信模式。 在硬件连接上,将MPU6050模块的VCC和GND分别与电源正负极相连以供电。SCL引脚连接到STM32的PB10口,SDA则接至PB11口。XCL和XDA用于扩展接口目前并未使用所以暂时不接入电路中;AD0引脚可用来更改从机地址中的最低位,但若无特别需求可以保持悬空状态(模块内部已配置下拉电阻),相当于接地处理。此外,中断信号输出端INT暂未利用到因此也先不予连接。 鉴于本项目采用I2C2外设进行硬件通信,在查阅引脚定义表后确认SCL接至PB10而SDA则连在了PB11上,请务必注意不要在此过程中发生错误。
  • BMA150(G-Sensor)
    优质
    本数据手册详述了BMA150三轴加速度传感器的技术规格、工作原理及应用指南,适用于需要精确测量运动和姿态的应用。 三轴加速度传感器(又称重力传感器或GSensor)以及BMA150加速计的说明书包含两个PDF文件:第一个是产品介绍说明书;第二个提供了详细的硬件接口描述,包括I2C/SPI接口访问时序及寄存器描述等信息。