Advertisement

MATLAB概述,包含图像轮廓线提取以及图像分割技术。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
该资源内容涵盖了MATLAB的基础知识介绍,以及图像轮廓线提取和图像分割等关键技术的详细阐述。此外,其中还包含了m文件代码,可以直接粘贴运行,方便用户学习和实践。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于 MATLAB 程序
    优质
    本MATLAB程序利用图像轮廓信息进行精确的图像分割,适用于多种图像处理任务,为后续分析提供清晰边界。 图像的分割技术在MATLAB中的应用研究
  • MATLAB入门+检测+方法
    优质
    本课程涵盖MATLAB基础编程及其实用案例解析,包括图像处理中的轮廓检测和多种图像分割技术,适合初学者快速掌握并应用于实际项目。 该文档涵盖了MATLAB基础简介、图像轮廓线提取以及图像分割技术,并包含可以直接运行的m文件代码。
  • 基于跟踪的(MATLAB)源码
    优质
    本项目提供了一套基于MATLAB环境下的图像轮廓提取与追踪算法实现代码。利用先进的边缘检测和轮廓分析技术,可以有效地识别并跟踪各类图像中的目标边界信息,广泛应用于机器视觉、机器人导航等领域。 这段文字描述的是用于提取图像轮廓的MATLAB源代码集合,包含了五个独立且可运行的程序文件,并采用轮廓跟踪算法实现功能。
  • 基于跟踪的(MATLAB)源码
    优质
    本源码利用MATLAB实现基于轮廓跟踪技术的图像轮廓自动提取,适用于目标识别、特征提取等领域,为相关研究与应用提供便捷工具。 这段文字描述了一组用于提取图像轮廓的MATLAB源代码,这些代码基于轮廓跟踪算法编写,并且可以正常运行。共包含5个独立的源代码文件。
  • 基于跟踪的(MATLAB)源码
    优质
    本项目提供了一套基于MATLAB实现的图像轮廓提取及跟踪算法的源代码。通过先进的边缘检测和曲线拟合技术,准确地识别并追踪图像中的关键轮廓信息。适用于科研、教育与工程实践等多个领域的需求。 这段文字描述了一组用于提取图像轮廓的MATLAB源代码,共有五个程序,并且这些代码都是正确可运行的。
  • 基于跟踪的(MATLAB)源码
    优质
    这段简介描述了一个使用MATLAB编写的代码库,专注于通过轮廓跟踪技术来实现图像中目标对象边缘的有效检测和提取。该工具为研究人员及开发者提供了一种强大的方式去分析图片中的形状信息,适用于物体识别、模式识别等多个领域。 这段文字描述了一组用于提取图像轮廓的MATLAB源代码,这些代码基于轮廓跟踪算法编写,并且都是可以正常运行的。这套代码包含5个独立的程序文件。
  • 基于MATLAB的SVM
    优质
    本研究利用MATLAB平台开发支持向量机(SVM)算法,专注于图像分割和特征提取的技术应用,旨在提高图像处理精度与效率。 利用SVM(支持向量机)进行图像分割/提取。对给定的图像进行处理,将其中需要的区域与背景区域区分出来,并生成相应的分割图和边界图。
  • Matlab水平集代码-SketchTokens: 基于的中层特征进行的工具
    优质
    SketchTokens是一款利用Matlab开发的工具箱,专注于通过提取基于轮廓的中层视觉特征来进行高效的图像轮廓分割。该工具适用于研究和教学用途,为用户提供了强大的水平集方法实现。 水平集分割Matlab代码草图令牌工具箱V0.95提供了用于提取基于轮廓的中级特征以及从图像中进行轮廓分割的功能。该软件包在保持高精度的同时,具有很高的运行速度。此外,相关研究显示,所提取的中间层特征为物体和行人检测提供了额外的信息。 要使用此工具箱,请下载Piotr的图像和视频Matlab工具箱,并安装伯克利细分数据集(BSDS500)。预训练模型可以从指定位置获取。查找stDemo.m文件以了解如何进行代码训练与测试的具体步骤。如果最终决定采用这些代码,建议引用以下论文: [1] Joseph J. Lim, C. Lawrence Zitnick 和 Piotr Dollar,“草图令牌:用于轮廓和对象检测的学习型中级表示”,CVPR2013。 此工具箱遵循简化版的BSD许可协议,并且如果发现任何错误或有任何问题,可以通过电子邮件联系作者。
  • 基于主动模型的改良
    优质
    本研究提出了一种基于主动轮廓模型改进的图像分割方法,旨在提高复杂背景下的目标识别精度和效率,适用于医疗影像分析、计算机视觉等领域。 主动轮廓模型在计算机视觉与图像处理领域被广泛应用,主要用于图像分割、目标跟踪及边缘检测等方面。该技术最初由Kass等人于1987年提出,并被称为蛇模型或主动轮廓模型,其核心在于通过能量最小化驱动初始轮廓向具有特征的区域靠近以实现精确分割。 然而,传统的蛇模型存在一些局限性:首先,在初始化阶段对起始位置的要求极高;其次,在处理过程中可能会遗漏重要信息(边界泄漏现象);此外,它在面对凹形边缘时表现不佳。为解决这些问题,Xu提出了梯度向量流(GVF) 蛇模型来扩大初始轮廓的捕获范围并增强其捕捉凹形边界的性能。之后,Xu和Prince进一步发展了广义梯度向量流 (GGVF) 模型,并加入两个可调权重系数以优化蛇模型的表现。 本段落提出了一种基于主动轮廓模型改进后的图像分割方法。该方法首先采用多步骤方向策略来扩大初始轮廓的范围并获得更精确边缘定位;其次,将拉普拉斯算子分解为切线和法向分量,以此减弱边界平滑效果,并引入两个自适应权重函数以根据局部特征动态调整模型参数。 通过主观与客观评估表明,所提出的改进方法在现有先进图像分割技术中表现出色。其关键点包括: 1. 多步骤方向策略:提高对初始轮廓的精确调节。 2. 拉普拉斯算子分解:减少边界平滑导致的信息丢失。 3. 自适应权重函数:使模型能够根据局部特征自适应调整参数,提升分割精度。 4. GVF与GGVF技术应用:优化了起始位置敏感性、防止信息遗漏及增强凹形边缘捕捉能力。 改进后的主动轮廓模型图像分割方法显著提升了图像分割的准确性和鲁棒性。该方法不仅适用于图像分割任务,在目标跟踪和边缘检测等领域同样具有广泛应用前景,充分展现了主动轮廓模型在计算机视觉与图像处理领域的潜力和发展趋势。
  • 数字处理中的阈值算法
    优质
    本研究探讨了数字图像处理中阈值分割和轮廓提取技术,旨在提高图像识别精度及效率。通过优化算法,实现对复杂背景下的目标物体精准定位与分析。 数字图像处理常用算法包括阈值分割、轮廓提取、区域增长和种子填充算法,这些算法可以用C++进行开发。