Advertisement

多智能体编队轨迹跟踪控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
简介:本研究聚焦于多智能体系统的协同编队与轨迹跟踪问题,通过优化算法实现各成员间的协调运动和路径跟随,确保整体团队高效稳定运行。 多智能体编队控制涉及一致性控制、人工势场法以及领航跟随法等多种技术方法。这些方法旨在实现多个自主移动实体之间的协调与协作,确保它们能够按照预定规则或策略形成并维持特定的队形结构。一致性控制关注于使所有成员达到状态同步;人工势场法则通过模拟物理力作用来引导智能体避开障碍物和相互之间保持适当距离;领航跟随法则是基于领导者-追随者模式实现编队移动,其中一些智能体作为领导者设定路径,其余则根据特定规则跟随着行进。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    简介:本研究聚焦于多智能体系统的协同编队与轨迹跟踪问题,通过优化算法实现各成员间的协调运动和路径跟随,确保整体团队高效稳定运行。 多智能体编队控制涉及一致性控制、人工势场法以及领航跟随法等多种技术方法。这些方法旨在实现多个自主移动实体之间的协调与协作,确保它们能够按照预定规则或策略形成并维持特定的队形结构。一致性控制关注于使所有成员达到状态同步;人工势场法则通过模拟物理力作用来引导智能体避开障碍物和相互之间保持适当距离;领航跟随法则是基于领导者-追随者模式实现编队移动,其中一些智能体作为领导者设定路径,其余则根据特定规则跟随着行进。
  • 车辆的研究
    优质
    本研究聚焦于智能车辆的轨迹跟踪控制技术,探索并优化算法以实现精准、稳定的自动驾驶路径跟随,提升道路安全与驾驶体验。 为了适应系统模型的需求,我们建立了车辆三自由度动力学模型,该模型涵盖了横向、纵向及横摆三个方向的运动,并结合基于魔术公式的轮胎模型,在小角度转向的基础上对车辆模型进行了进一步简化,降低了复杂性,为后续轨迹跟踪控制的研究奠定了基础。接下来研究了非线性模型预测控制方法,并将其转化为易于求解的线性化形式。我们详细探讨了这一转化过程中的各种变换,并建立了相关的预测模型和目标函数。 此外,还深入研究了线性化误差、车辆动力学约束条件以及二次规划问题,基于这些理论结合车辆仿真模型设计出了模型预测轨迹跟踪控制器。在此过程中,特别关注了预测时域对系统性能的影响,通过速度与附着系数输入制定了一系列模糊控制规则,并确定了最优的预测时域参数。最终利用模糊控制原理开发了一种变时域自适应轨迹跟踪控制器。 为了验证所提出控制器的有效性,在多种工况下使用MATLAB/Simulink和Carsim软件搭建了一个联合仿真平台进行了测试。此外,还考虑到了参考路径上可能存在的障碍物情况,并在此基础上研究了避障轨迹跟踪控制策略。我们设计了一种双层系统:上层为基于模型预测算法的局部路径规划模块;下层则是负责执行具体跟随动作的轨迹跟踪控制系统。 通过以上工作,我们的目标是提高车辆在复杂环境中的自主导航能力,特别是在存在动态障碍物的情况下能实现安全、高效的行驶路线选择与实时调整。
  • 绘图工具:便捷创建美观的图形-MATLAB开发
    优质
    本项目提供了一款用于多智能体系统研究的MATLAB绘图工具,支持快速生成精美的轨迹和编队图形,便于研究人员直观展示复杂的编队控制算法。 一个简单的实用函数可以帮助解释飞机编队控制算法和轨迹。
  • chap2.rar_滑模_滑模__滑模方法
    优质
    本资源为chap2.rar,包含有关滑模轨迹及轨迹跟踪控制的研究内容,重点介绍了滑模方法在实现精确轨迹跟踪中的应用。 基于滑模控制的机器人的轨迹跟踪控制仿真实验研究
  • 车横向的自适应MPC
    优质
    本研究提出了一种基于模型预测控制(MPC)的自适应算法,专门用于改善智能车辆在各种道路条件下的横向轨迹跟踪性能。通过实时调整参数和优化路径规划,该方法能有效应对动态环境变化,确保行车安全与稳定性。 在当今科技迅速发展的时代背景下,自动驾驶技术已经成为研究热点与市场关注的焦点。其中,在车辆自主驾驶系统中的轨迹跟踪控制环节扮演着至关重要的角色。通过智能地操控汽车转向系统,使车辆能够按照预设路径行驶是其主要任务之一。 为了提高这一过程的精确性和适应性,研究人员引入了一种先进的自适应模型预测控制(Adaptive Model Predictive Control, AMPC)策略,并在横向轨迹跟踪方面取得了显著成果。AMPC是对传统模型预测控制(MPC)的一种扩展和改进,它结合了MPC处理复杂约束及多目标优化的强大能力,同时融入了自适应控制系统中参数估计的优势。 具体而言,在自动驾驶汽车的横向路径追踪任务中,传统的MPC通过构建车辆动力学模型来预测未来一段时间内的行驶行为,并基于这些预测结果计算出最优控制策略以确保车辆尽可能准确地沿着预设轨迹行进。然而,由于实际驾驶过程中可能遇到多种不可预见的因素(如道路条件变化、速度差异和负载变动等),这可能导致实际的汽车动态特性与模型预测之间出现偏差,从而影响到路径追踪的效果。 AMPC通过在线实时调整模型参数以适应这些变化,并有效减少因模型误差导致的跟踪错误。因此,在复杂多变的道路环境中,智能车辆依然能够保持较高的轨迹跟随精度和稳定性,这对于提高自动驾驶系统的整体性能至关重要。 在仿真测试中,自适应MPC的应用效果得到了充分验证。通过对不同驾驶场景(如静态与动态环境)进行对比分析,可以看出AMPC相较于传统控制策略明显减少了跟踪误差、提高了路径追踪的精确度和稳定性。例如,在应对急转弯或突发障碍物避让等紧急情况时,AMPC能够迅速调整控制策略以确保车辆沿着最优路径且最小化偏差完成横向轨迹追踪任务。 然而,要将自适应MPC更好地应用到实际自动驾驶系统中仍面临一些技术挑战。首先,由于在线计算量较大,需要算法具备更高的实时性,并对计算资源提出更高要求;其次,在保证控制系统鲁棒性的前提下,必须充分考虑可能存在的模型误差及外部干扰的影响。 综上所述,自适应模型预测控制(AMPC)在自动驾驶汽车横向轨迹追踪中的应用展现出强大的能力和广阔的应用前景。通过动态调整参数以适应变化条件,该技术显著提升了自动驾驶系统的灵活性和精确度,并为实现智能车辆精准可靠的路径跟踪提供了重要的技术支持。随着研究的不断深入和技术的进步,预计自适应MPC将在未来自动驾驶领域发挥更加关键的作用,推动这项技术进一步发展与普及。
  • 新型领航器设计
    优质
    本研究提出了一种创新性的多智能体领航跟随编队控制策略,旨在优化复杂环境下的协同作业与动态调整能力,为无人机、机器人等领域的编队控制系统提供新的理论支持和技术方案。 研究了一种基于离散时间模型的多智能体领航跟随编队控制算法。该算法通过引入基于邻居的局部控制律以及状态估计规则设计了新的控制器,使得在设定跟随者与领航者的相对坐标后可以轻松实现任意形状的编队配置。此外,文章还提出了利用坐标旋转公式来使整个队伍能够根据领航者的运动方向进行相应调整,并分别给出了固定拓扑和切换拓扑条件下系统稳定编队的充分条件。最后通过Matlab仿真以及在Amigobot机器人平台上的实验验证了算法的有效性和实际应用可行性。
  • 的代码
    优质
    本项目涉及多智能体系统的编队控制算法实现,提供了一系列用于研究和教学目的的代码资源。 分布式一致性多智能体编队控制是一项复杂的研究内容,涉及到多种技术的综合应用。每个编队成员需要配备控制器、传感器和推进系统,而整个编队则需具备多传感器信息融合及机间通信等能力。
  • 系统的.7z
    优质
    《多智能体系统的编队控制》是一份关于多个自主移动实体协调行动的研究资料集,探讨了如何通过算法实现智能体间的高效协作与位置保持。 Formation Control of Multi-Agent Systems: A Graph Rigidity Approach一书配套程序已经亲测可用。
  • :应用于无人船的系统
    优质
    本研究聚焦于开发适用于无人船的高效能轨迹跟踪控制技术,旨在实现船舶自主航行时的高精度路径跟随和动态调整能力。 TrajectoryControl用于无人船的轨迹跟踪控制,在基于Matlab的验证数学模型中使用了两轮差速的小车模型。在Trajectory and Control.m文件中的代码主要通过PID环节对航向角进行控制,使小车朝目标前进。而在trajectory(两个闭环).m文件中,则是利用PID环节同时对航向角和距离进行控制,以引导小车到达目的地(效果很好)。我会设定小车的起点坐标为x=2, y=1, theta=pi/6以及终点限制在x=10, y=10;同样地,也可以设置起点为x=2, y=1, theta=pi/2,并将终点设于相同的x和y值。这样可以得到两个不同的轨迹图(仅通过修改航向角theta)。