Advertisement

关于深度学习在滚动轴承故障检测中的应用研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了深度学习技术在滚动轴承故障检测领域的应用,通过分析不同模型的有效性,旨在提高故障识别精度和可靠性。 轴承是机械设备中的关键部件之一,在实际操作过程中由于过载、疲劳、磨损或腐蚀等原因容易损坏。事实上,超过50%的旋转机器故障与轴承故障有关。滚动轴承故障可能导致设备剧烈摇晃,甚至造成生产停滞及人员伤亡。早期检测到复杂的弱故障对于预防损失至关重要。 近年来,人们越来越关注如何利用振动信号分析等技术进行有效的轴承诊断和维护工作。在此次竞赛中,我们提供了真实的轴承振动数据集,并邀请参赛者使用机器学习方法来判断轴承的工作状态。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文探讨了深度学习技术在滚动轴承故障检测领域的应用,通过分析不同模型的有效性,旨在提高故障识别精度和可靠性。 轴承是机械设备中的关键部件之一,在实际操作过程中由于过载、疲劳、磨损或腐蚀等原因容易损坏。事实上,超过50%的旋转机器故障与轴承故障有关。滚动轴承故障可能导致设备剧烈摇晃,甚至造成生产停滞及人员伤亡。早期检测到复杂的弱故障对于预防损失至关重要。 近年来,人们越来越关注如何利用振动信号分析等技术进行有效的轴承诊断和维护工作。在此次竞赛中,我们提供了真实的轴承振动数据集,并邀请参赛者使用机器学习方法来判断轴承的工作状态。
  • 诊断-李宁宁.caj
    优质
    本文探讨了深度学习技术在滚动轴承故障诊断领域的应用,作者李宁宁通过实验分析展示了深度学习算法如何有效提升故障检测与预测的准确性和效率。 基于深度学习的滚动轴承故障诊断方法研究是由李宁宁进行的研究工作。该研究探讨了如何利用深度学习技术来提高对滚动轴承故障检测与诊断的准确性及效率。通过采用先进的数据分析技术和算法,这项研究为机械工程领域提供了一种新的解决方案,有助于延长机械设备寿命并减少意外停机时间。
  • Teager能量算子诊断
    优质
    本研究探讨了Teager能量算子在滚动轴承故障诊断中的应用效果,通过理论分析和实验验证,展示了其在信号处理与故障特征提取方面的优势。 Teager 能量算子能够估算产生信号所需的总机械能,并且对信号瞬态变化具有良好的时间分辨率和自适应能力,在检测信号冲击特征方面表现出独特优势。为了提取滚动轴承故障的特征频率,针对其振动信号中的瞬态冲击特点,提出了一种基于 Teager 能量算子的频谱分析方法。该方法利用 Teager 能量算子来识别由轴承故障引起的周期性冲击,并通过计算瞬时 Teager 能量的傅里叶变换以识别出轴承特有的故障频率特征。
  • FreqBand_entropy_诊断_频带熵__
    优质
    本文探讨了频带熵在轴承故障诊断中的应用,通过分析不同频率段的信息量来有效识别和评估轴承的健康状态。该方法为机械设备的状态监测提供了新的视角和技术支持。 频带熵的MATLAB代码可用于在噪声干扰下诊断轴承故障。
  • BP神经网络诊断.pdf
    优质
    本文探讨了BP(Back Propagation)神经网络在滚动轴承故障诊断中的应用,通过实验分析验证其有效性和准确性。研究旨在提升设备维护效率和预测能力。 本段落简要介绍了BP神经网络的结构与原理,并通过分析处理滚动轴承正常状态和故障状态下振动信号,提取了能够反映其运行状态的特征参数,进而提出了一种基于BP神经网络的滚动轴承故障诊断方法。作者为于婷婷、邵诚。
  • 卷积神经网络诊断.pdf
    优质
    本文探讨了卷积神经网络(CNN)在滚动轴承故障诊断中的应用效果,通过实验验证其在特征提取和故障分类上的优越性能。 本段落探讨了基于卷积神经网络的滚动轴承故障诊断方法的研究进展。通过利用深度学习技术中的卷积神经网络架构,研究旨在提高故障检测的准确性和效率,为机械设备维护提供有效的技术支持。文章分析了现有方法的优势与局限,并提出了一种改进方案以应对复杂工况下的挑战性问题。
  • PCA-SVM诊断
    优质
    本文探讨了PCA-SVM方法在滚动轴承故障诊断中的应用价值,通过结合主成分分析(PCA)和支撑向量机(SVM),有效提高了故障识别与分类精度。 随着现代制造业向大型化、柔性化及智能化方向发展,保障生产设备的安全运行变得越来越重要。为此,提出了一种基于PCA-SVM算法的轴承故障诊断分析模型。该模型首先提取轴承振动信号中的时域指标参数,并通过主成分分析法(PCA)对这些参数进行优化和选择。利用降维的思想将多个参数转化为综合参数,然后以这些综合特征值作为支持向量机(SVM)分类器的输入向量训练分类模型。最后,在测试集上进行了故障诊断实验,结果显示PCA-SVM模型能够有效提高模型的分类效率与精度,并能快速定位和排查轴承故障,从而降低因设备故障导致的生产问题及经济损失。
  • MEEMD方法
    优质
    本研究提出了一种基于改进经验模态分解(MEEMD)的滚动轴承故障检测新方法,有效提升了故障特征提取精度和诊断准确性。 本段落提出了一种改进的集总平均经验模式分解(MEEMD)方法来提取滚动轴承故障信号。通过对采集到的振动数据进行MEEMD分解,可以获得不同频率下的本征模式函数(IMF)。随后对各个本征模式函数进行了包络谱分析,并通过这些频谱信息来诊断出轴承故障。仿真和实验结果表明,利用MEEMD方法可以有效地应用于滚动轴承内外圈故障的检测与识别中。
  • LabVIEW系统
    优质
    本项目开发了一套基于LabVIEW平台的滚动轴承故障检测系统,利用先进的信号处理技术实现对滚动轴承早期故障的有效诊断。该系统界面友好、操作简便,能够满足工业现场实时监测的需求,为设备维护提供科学依据。 通过对滚动轴承工作特性和故障的研究,设计了基于LabVIEW软件的滚动轴承故障诊断系统。该系统分析了滚动轴承的振动机制与失效形式,并采用共振解调分析及希尔伯特变换作为滚动轴承故障诊断的方法。实验结果表明,该系统能够准确有效地识别和支持架相关的滚动轴承故障。
  • 信号分析方法
    优质
    本研究致力于探索和改进用于分析滚动轴承在运行中产生的振动信号的方法,旨在通过深入理解这些信号来更早地预测并诊断设备故障。通过对现有技术进行评估及创新性开发新算法,力求提高滚动轴承的维护效率与可靠性,从而减少意外停机时间,提升工业生产的安全性和经济效益。 针对滚动轴承故障信号的非平稳性和非高斯特性,本段落提出了一种结合时域分析与小波分析的方法来进行故障诊断。基于对不同信号分析方法理论的研究,以滚动轴承外圈发生振动故障的情况为例,应用了多种信号处理技术进行研究和对比。结果表明,在对滚动轴承故障进行分析时,各种方法各有特点。因此在实际操作中可以综合运用时域分析与小波分析的方法来实现滚动轴承状态的实时监测以及精确地定位故障位置。