Advertisement

高等数学第七版(同济大学)习题详解.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《高等数学第七版(同济大学)习题详解》为同济大学编写的高等数学教材第七版提供全面解析,包含各章节课后习题的答案与详细解答过程。适合学习高等数学的学生参考使用。 高等数学第七版同济大学课后习题的详细讲解资料可以帮助学生更好地理解和掌握课程内容。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    《高等数学第七版(同济大学)习题详解》为同济大学编写的高等数学教材第七版提供全面解析,包含各章节课后习题的答案与详细解答过程。适合学习高等数学的学生参考使用。 高等数学第七版同济大学课后习题的详细讲解资料可以帮助学生更好地理解和掌握课程内容。
  • 》()下册12章
    优质
    本书为《高等数学》(第七版)下册第12章的配套学习资料,提供详尽的习题解析与解题思路,适合高校学生及自学者参考使用。 同济大学高等数学(第七版)下册第12章习题答案详解包括以下部分: - 习题12-1:常数项级数的概念和性质 - 习题12-2:常数项级数的审敛法 - 习题12-3:幂级数 - 习题12-4:函数展开成幂级数 - 习题12-5:函数的幂级数展开式的应用 - 习题12-6:函数项级数的一致收敛性及一致收敛级数的基本性质 - 习题12-7:傅里叶级数 - 习题12-8:一般周期函数的傅里叶级数 - 总习题十二
  • 》() 下册八章
    优质
    本书为《高等数学》(第七版)下册第八章的配套辅导书,提供了详尽的习题解析,帮助读者深入理解和掌握相关知识点。 同济大学高等数学(第七版)下册第八章涵盖了向量代数与空间解析几何的内容,包括以下习题: - 8-1:向量及其线性运算 - 8-2:数量积、向量积和混合积 - 8-3:平面及其方程 - 8-4:空间直线及其方程 - 8-5:曲面及其方程 - 8-6:空间曲线及其方程 此外,还有总习题八供学生练习。
  • )上册().pdf
    优质
    《高等数学(第七版)》上册由同济大学数学系编著,本书系统地介绍了高等数学的基础理论与方法,内容包括函数、极限、一元微积分等,适用于高等院校理工科专业教学。 《高等数学》第7版(上册),同济大学编著,中文版,扫描版,包含目录。
  • 优质
    《第七版同济高等数学》是经典的高等数学教材修订版,内容全面系统,涵盖微积分、空间解析几何与向量代数等众多领域,适用于高等院校理工科类专业教学。 同济版高数上册教材的扫描版可以免费下载,方便学习。
  • 优质
    《同济第七版高等数学》是经典的高等数学教材,由同济大学数学系编著。本书内容全面、逻辑严谨,适合高等院校工科类专业使用,深受师生喜爱。 《高等数学》是大学教育中的核心课程之一,同济大学出版社出版的第七版因其严谨的学术性和详实的内容而被广泛用作本科及考研教材。该书涵盖了多元函数微积分、常微分方程、无穷级数和空间解析几何等多个重要领域,为后续专业学习与科研工作奠定了坚实的理论基础。 一、多元函数微积分 1. 多元函数的基本性质:包括连续性、偏导数和全微分等。 2. 偏导数与梯度向量的应用:理解偏导数的物理意义及其在求解最大值最小值问题中的作用。 3. 链式法则的应用:掌握如何运用链式法则解决复杂函数的求导问题。 4. 多元泰勒公式:了解多元函数的泰勒展开,及它在近似计算中的应用。 二、常微分方程 1. 基本概念与定义:明确常微分方程的概念,并理解齐次和非齐次方程的区别。 2. 解的存在唯一性定理:探讨解存在性和唯一性的条件,了解Picard-Lindelöf定理的相关内容。 3. 常系数线性微分方程的求解方法:学习如何使用分离变量法、特征根法等解决常系数齐次和非齐次方程问题。 4. 特征曲线与相平面分析:通过研究动态系统的稳定性,掌握特征曲线及相平面分析的方法。 三、无穷级数 1. 数项级数的性质及其判别方法:了解收敛性、发散性的基本概念。 2. 绝对收敛与条件收敛的区别和判断法则。 3. 幂级数的相关知识:包括幂级数的收敛域,以及它们如何用于函数展开。 4. 周期函数傅立叶级数表示及其应用。 四、空间解析几何 1. 空间坐标系及向量代数学:理解三维直角坐标系统,并掌握各种基本运算如加减法、标量乘积和内积等。 2. 直线和平面的方程形式:学习直线与平面的一般方程式及其相互关系。 3. 曲面方程的应用:包括曲面一般式及参数式的理解,以及切平面和法线的概念。 4. 空间曲线的研究:掌握空间曲线的参数表示,并了解其几何特性如曲率和挠度。 《高等数学》第七版提供了丰富的理论知识与大量例题习题,有助于读者加深对概念的理解。通过深入学习该书内容,不仅能提升个人逻辑思维能力,还能为解决实际问题提供有效的数学工具支持。对于2018年考研的学生而言,《高等数学》是复习过程中不可或缺的重要参考书籍之一。
  • )课后答案析.pdf
    优质
    《高等数学(同济第七版)课后习题答案解析》提供针对教材中各章节习题的详细解答,帮助学生深入理解概念和解题方法。适合学习辅助及自测使用。 大学高数上册课后习题全解(高清扫描版),是考研学子的必备资料!加油同志们!
  • 上册).pdf
    优质
    《高等数学(第七版)》由同济大学数学系编著,本书上册内容包括函数与极限、导数与微分、中值定理及应用等,适用于高等院校工科类各专业的教学需求。 高等数学 第7版(同济大学 上册)涵盖了从第1章到第7章的内容,并附有习题答案。 第一章 函数与极限包括: - 映射与函数 - 数列的极限 - 函数的极限 - 无穷小与无穷大 - 极限运算法则 - 极限存在准则及两个重要极限 - 无穷小的比较 - 函数的连续性与间断点 - 连续函数的运算和初等函数的连续性 - 闭区间上连续函数的性质 第二章 导数与微分包括: - 导数概念 - 求导法则 - 高阶导数 - 隐函数及参数方程所确定的函数的导数及相关变化率 - 函数的微分 第三章 微分中值定理与导数的应用包括: - 微分中值定理 - 洛必达法则 - 泰勒公式 - 函数的单调性及曲线凹凸性 - 极值和最值问题 - 图形描绘方法 - 曲率分析 - 方程近似解法 第四章 不定积分包括: - 基本概念与性质 - 换元积分法 - 分部积分法 - 有理函数的积分计算 - 积分表使用指南 第五章 定积分包括: - 基本概念和性质 - 微积分基本公式 - 换元法和分部积分法的应用 - 反常(广义)积分及其审敛法则 第六章 定积分应用: - 元素法介绍 - 几何学中的定积分应用 - 物理学中定积分的运用 第七章 微分方程包括: - 基本概念 - 可分离变量微分方程求解 - 齐次方程分析 - 一阶线性微分方程处理方法 - 求可降阶高阶微分方程的通解 - 研究常系数齐次和非齐次线性微分方程 附录部分包括行列式简介、基本初等函数图形、几种常用曲线以及积分表。
  • 上下册
    优质
    《高等数学》同济大学第七版解析包括上、下两册,详细解读了微积分、空间解析几何与向量代数等内容,适合高等院校工科类专业学生使用。 1. 使用洛必达法则求极限是最常见的方法之一,务必熟练掌握。 2. 无穷小量替换法在解题过程中非常有用,几个关键的等价公式需要倒背如流。 3. 求含有参数的极限时,关键是理解常量与变量之间的关系。这一过程能体现你对极限计算基本功的理解和运用能力。 4. 关于1的无穷次方型极限是重点内容,多做几道练习题有助于掌握其解法技巧。 5. 在函数连续性的问题中要学会根据具体点修改或补充定义。理解“连续的概念是一个逐点概念”,意味着问题通常围绕特殊点展开,这是数学思想的一个重要方面。