本文探讨了在JMeter环境中应用迁移学习技术时面临的挑战,并着重分析了如何提高此类机器学习模型的透明度和理解度。通过详细解析迁移学习过程中的关键参数与数据流动,文章提出了几种增强模型可解释性的方法。这将帮助开发人员更好地理解和优化其性能。
11.5 迁移强化学习
Google公司的AlphaGo系列在围棋方面的成就让“强化学习”这一术语变得炙手可热。用深度神经网络来进行强化学习也理所当然地成为了研究热点之一。与传统的机器学习需要大量的标签数据不同,强化学习采用的是边获得样例边进行学习的方式。特定的反馈函数决定了算法做出最优决策的方向。然而,深度强化学习同样面临着没有足够训练数据的重大挑战,在这方面,迁移学习可以通过利用其他领域上已经训练好的模型来帮助解决这一问题。
尽管迁移学习已经被应用于强化学习的研究中 [Taylor and Stone, 2009] ,但是其发展空间仍然很大。目前来看,强化学习在自动驾驶、机器人技术以及路径规划等领域正发挥着越来越重要的作用。我们期待在未来能有更多的研究成果问世。
11.6 迁移学习的可解释性
深度学习虽然取得了众多突破性的成果,但面临的最大挑战之一就是缺乏足够的可解释性。“黑盒子”阶段描述了当前大多数深度学习方法的状态——无法产生足够有说服力的解释。同样的问题也存在于迁移学习领域中。
尽管世间万物之间都存在着联系,但是它们之间的深层次关系尚未得到充分探索和理解。不同领域的相似程度也无法像海森堡“测不准原理”那样给出明确结论:为什么A领域与B领域更相似而C领域则不那么相似?目前的研究还停留在经验阶段,并缺乏有效的理论证明。
此外,现有的迁移学习算法虽然能够完成特定的迁移任务,但在知识如何进行有效转移的过程中仍存在解释性较弱的问题。最近,澳大利亚悉尼大学的一组研究者发表了一篇论文 [Liu et al., 2017] ,其成果有助于理解特征在不同领域间的迁移过程。
尽管如此,在使用深度网络来进行迁移学习时,对其可解释性的探索依然处于初级阶段,并且需要进一步的实验和理论验证。最近Google Brain的研究人员对神经网络内部机制进行了有趣的研究,这对提高模型的透明度具有重要意义。