本PPT课件详细讲解了磁共振成像的基本原理、发展历程及应用领域,旨在帮助学习者掌握MRI技术的核心知识和临床价值。
磁共振成像(Magnetic Resonance Imaging, MRI)是一种非侵入性的医学影像技术,利用原子核在磁场中的共振现象来生成体内组织的详细图像。MRI的基本原理涉及电学、磁学、量子力学以及高等数学和初等数学等多个领域的科学知识。
其核心在于主磁体,用于产生稳定且高度均匀的磁场。磁场强度通常以特斯拉(Tesla, T)为单位衡量,例如0.35T至3T或更高。更强的磁场意味着更高的图像质量,因为信噪比(Signal-to-Noise Ratio, SNR)会随之提高。主磁体分为永磁、电磁常导和超导三类,其中超导型提供最强的磁场强度,并且有开放式和封闭式设计以适应不同的临床需求。
梯度线圈是MRI系统中的关键组件之一,负责空间定位与信号产生。通过在X、Y、Z三个轴向施加可变梯度场来确定氢原子(主要探测对象)的确切位置。高精度的性能参数如场强和切换率直接影响成像速度及图像质量。这使得快速成像技术成为可能,例如回波平面成像(EPI) 和 快速自旋回波(FSE) 序列。
脉冲线圈用于发射射频脉冲以激发氢原子核,并接收它们释放的信号;计算机系统则负责处理这些信号并重建出二维或三维组织图像。理解MRI的工作原理需要掌握量子力学中的能级和磁矩,以及电磁波与物质相互作用的基础知识。
在数学方面,傅里叶变换用于将原始射频信号从时间域转换到频率域以解析不同组织的特性;同时,图像处理算法如重建技术依赖于线性代数及微积分等理论的支持。MRI结合了物理学、工程学和计算科学等多个领域,在氢质子在主磁场中的预cession受到射频脉冲激发后产生信号,并通过梯度场作用下进一步形成可视化图像。
因此,深入理解MRI的基本原理对于操作设备以及正确解读其生成的医学影像至关重要。