Advertisement

Delphi XE AES加密与解密源码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了使用Delphi XE进行AES加密和解密的完整源代码示例,适用于需要在应用中实现高级加密标准(AES)安全数据传输和存储的开发者。 Delphi XE 中可用的 AES 加密解密源码可以用于实现数据的安全传输与存储。这类代码通常包含加密算法的具体实现细节,并且需要确保使用的库或组件是可靠的,以保证加密的质量和安全性。在使用此类功能时,开发者应当注意选择经过验证的方法来避免潜在的安全漏洞。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Delphi XE AES
    优质
    本资源提供了使用Delphi XE进行AES加密和解密的完整源代码示例,适用于需要在应用中实现高级加密标准(AES)安全数据传输和存储的开发者。 Delphi XE 中可用的 AES 加密解密源码可以用于实现数据的安全传输与存储。这类代码通常包含加密算法的具体实现细节,并且需要确保使用的库或组件是可靠的,以保证加密的质量和安全性。在使用此类功能时,开发者应当注意选择经过验证的方法来避免潜在的安全漏洞。
  • Delphi中的AES示例
    优质
    本篇文章提供了在Delphi编程环境中实现AES加密和解密的具体代码实例。通过这些示例,开发者能够轻松地将高级加密标准集成到他们的应用程序中以增强数据安全性。 AES(高级加密标准)是一种广泛应用的块密码算法,用于保护敏感数据,在信息安全领域具有重要地位,并被许多软件和系统采用。Delphi是由Embarcadero Technologies开发的一种面向对象的Pascal编程语言,常用于创建桌面应用程序。 在这个使用Delphi编写的源代码示例中,我们将探讨AES加密与解密的基本原理及其实现方式。AES算法基于Rijndael算法设计,由比利时密码学家Joan Daemen和Vincent Rijmen提出。它采用128位的数据块,并支持不同长度的密钥(如128、192或256位)。在进行加密时,该算法包括四个主要步骤:子密钥生成、字节替换(SubBytes)、行移位(ShiftRows)和列混淆(MixColumns),而在解码过程中,则按照相反顺序执行这些操作。 要在Delphi中实现AES的加解密功能,首先需要引入支持相关操作的库文件,比如TLibCryptography或Indy Cryptography Library。接着定义一个结构体以存储密钥与初始化向量(IV),并创建一个AES对象实例,在此基础上设置好所需的参数值、加载相应的密钥和IV之后便可以开始进行加密解码了。 具体来说,加解过程如下: 1. 准备待处理的数据,并确保其长度是128位(即16字节)的整数倍。 2. 将数据分割成多个块,每个块都是由上述规定数量的字节组成。 3. 对每一个独立的数据区块执行AES加密函数操作,使用已设定好的密钥和IV信息作为输入参数。 4. 加密完成后得到一系列16字节大小的密文段落;将它们按顺序拼接起来即可获得最终完整的加密结果。 解码过程与此类似但步骤相反: 1. 接收并拆分收到的加密数据,确保每个部分都恰好包含一个完整块(即128位)。 2. 利用相同的密钥和IV信息对这些单独的区块执行AES解密函数操作。 3. 将经过处理后的各个片段重新组合起来便可以恢复出原始未加密的数据。 Delphi源代码示例中通常会包含如何初始化AES对象、设置所需参数以及调用加解码功能的具体实现。此外,为了增强安全性,在实际应用时还应考虑密钥管理和随机数生成机制以确保每次使用不同的IV值来提高系统安全水平。 通过学习这一实例,开发者能够更好地理解AES的运作原理,并在自己的项目中有效运用这些知识和技术手段保护用户数据的安全性。这对于提升信息安全领域的专业技能来说至关重要。
  • C++ AES
    优质
    本项目提供一个C++实现的AES加密和解密功能库。用户可以使用这个开源代码进行数据安全传输或存储保护,支持多种模式与填充方式。 需要一个结构清晰的C++源代码来实现AES加密解密程序,其中分组和秘钥均为128位。
  • Delphi AES JAVA、PHP、C#兼容
    优质
    本工具采用AES算法实现数据加密与解密功能,并确保与JAVA、PHP和C#等主流编程语言之间的兼容性,适用于Delphi开发环境。 AES for Delphi 加密解密与JAVA、PHP、C#效果一致的代码在Delphi10.3和10.2.3版本下已调试通过。算法模式包含CBC(加密块链)模式和ECB(电子密码本)模式,加密结果支持十六进制和base64补码方式:PKCS5Padding,密钥长度包括128、192、256位。
  • AES_MATLAB AES_AES.zip
    优质
    本资源提供了一个使用MATLAB实现AES(高级加密标准)算法进行数据加密和解密的完整示例。通过下载的AES.zip文件,用户可以获取到详细的代码以及相关文档,帮助理解并应用AES加密技术在数据保护中的作用。 AES是一种常用的加密算法,用于对数据进行安全的编码和解码。它能够确保数据在传输或存储过程中的安全性,防止未经授权的访问。AES支持多种密钥长度(如128位、192位和256位),提供不同级别的安全保护。使用时需要选择合适的密钥长度,并正确实现加密和解密的过程以保证数据的安全性。
  • DESAES
    优质
    本课程详细讲解并实践了两种广泛使用的数据加密标准——DES和AES,涵盖其原理及应用。 个人示例:在VS2013环境下进行DES加密、DES解密以及AES加密、AES解密的操作。
  • AES
    优质
    AES(Advanced Encryption Standard)是一种广泛使用的密码编码规则,用于数据加密标准,提供128/192/256位的安全级别。本文将详细介绍AES的工作原理、加密和解密过程。 AES加密解密还有一个例子。
  • ASPDelphi之间的AES分享
    优质
    本文章主要介绍如何在ASP和Delphi程序中实现基于AES算法的数据加密与解密技术,并提供详细代码示例。 本源码基于DELPHI7编写,由小虫制作的AES数据加密/解密类改写而成,可以实现Asp与Delphi之间的互通加密传输。
  • Delphi AES组件Cipher_Component(1.0.0.0).rar
    优质
    Cipher_Component是一款专为Delphi设计的AES加密解密组件,版本1.0.0.0。该组件提供高效、安全的数据保护解决方案,适用于需要高强度加密的应用程序开发。 Delphi 开发的AES 等对称加密解密控件支持以下算法: 1. AES算法 - AES-128-CBC、AES-192-CBC、AES-256-CBC; - AES-128-CFB、AES-192-CFB、AES-256-CFB; - AES-128-CFB1、AES-192-CFB1、AES-256-CFB1; - AES-128-CFB8、AES-192-CFB8、AES-256-CFB8; - AES-128-ECB、AES-192-ECB、AES-256-ECB; - AES-128-OFB、AES-192-OFB、AES-256-OFB; 2. DES算法
  • AES_Verilog代实现_AES_VERILOG AES
    优质
    本项目提供了一个基于Verilog语言实现的AES(高级加密标准)算法模块,涵盖加解密功能。适用于硬件描述和验证场景,推动信息安全技术的应用与发展。 AES(高级加密标准)是一种广泛使用的块密码标准,用于数据加密和保护信息安全。它由美国国家标准与技术研究院在2001年采纳,并替代了之前的DES(数据加密标准)。AES的核心是一个名为Rijndael的算法,该算法由比利时密码学家Joan Daemen 和 Vincent Rijmen设计。 使用Verilog语言实现AES加密和解密功能是硬件描述语言的一种应用形式。这种技术用于在FPGA或ASIC等硬件平台上执行加密任务。Verilog是一种数字电子系统设计中常用的硬件描述语言,能够详细描绘系统的结构与行为特性,便于进行逻辑综合及仿真操作。 AES的加/解密过程主要包含四个步骤:AddRoundKey、SubBytes、ShiftRows和MixColumns,在这些过程中,明文或中间状态的数据通过一系列变换被转换为加密后的数据。在Verilog中,这四种运算将转化为具体的硬件电路实现,以执行相应的加密与解密操作。 1. **AddRoundKey**:此步骤是AES每一轮的开始阶段,它会把当前轮次使用的子密钥与明文或中间状态进行异或(XOR)操作。这个过程引入了随机性。 2. **SubBytes**:非线性的S盒替换操作将每个字节替换成一个特定值,以增强算法的安全复杂度。 3. **ShiftRows**:这一步骤执行的是对加密数据的行位移变换——第一行为不变;第二、三和四行分别向左移动一位、两位和三位。 4. **MixColumns**:列混合操作通过一系列线性和非线性转换,确保了即使输入发生微小变化也会在整个输出中产生大量差异。 在FPGA上实现AES加密解密时需要考虑的因素包括: - **效率优化**:为了提高速度并适应有限的硬件资源,设计应采用高效的算法和并行处理技术。 - **可配置性**:允许使用不同长度的密钥(如128、192或256位)及轮数变化(例如10、12或14轮),以便于灵活调整。 - **错误检测与处理**:在实际应用中,加入适当的错误检查机制以确保数据传输过程中的完整性至关重要。 - **接口设计**:实现良好的输入输出接口,便于与其他系统组件交互。这可能包括接收和发送数据的缓冲区以及控制信号等部分。 - **安全性评估**:硬件实施需经过全面的安全性审查,防止潜在的侧信道攻击和其他类型的物理层面威胁。 文档“AES加密_解密_verilog代码.docx”详细介绍了如何利用Verilog编写AES加/解密模块,并提供了具体示例和设计说明。通过阅读这份资料可以深入了解AES算法在Verilog中的实现细节以及其在FPGA上的部署方案。