Advertisement

计算机组成原理的第一次试验涉及运动码表以及Logisim软件。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
1、设计中包含了选择器、比较器以及相应的测试电路。2、此外,还涉及LED计数电路和LED计数测试电路的设计。3、进一步的开发包括了5输入编码器,并对LED计数测试电路进行了改进。4、同时,7段数码管显示驱动电路也得到了应用。5、此外,还包含2路选择器电路和比较器电路的设计。6、同时,4/16位D寄存器以及BCD计数器和4位码表计数器的实现也得到了考虑。7、最后,可选地设计了小型数字系统运动码表电路。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • :使用Logisim
    优质
    本实验为《计算机组成原理》课程中的第一项任务,旨在通过Logisim工具进行运动码表的设计与实现。学生将学习并实践基础数字逻辑电路的构建方法和技巧,了解处理器内部数据处理机制。这是一次理论结合实际操作的学习机会,帮助加深对计算机硬件结构的理解。 1. 选择器、比较器及测试电路 2. LED 计数电路及其测试电路 3. 5 输入编码器与改进后的LED计数测试电路 4. 7 段数码管显示驱动电路 5. 2 路选择器电路和比较器电路 6. 4/16位D寄存器、BCD计数器及四位码表计数器 7. 小型数字系统运动码表电路(选做)
  • 器设(使用Logisim
    优质
    本实验通过使用Logisim工具进行运算器的设计与实现,帮助学生深入理解计算机组成原理中关于算术逻辑单元的工作机制和数据处理流程。 实验报告相关: 实验目的: 1. 理解并掌握定点数加减法电路的工作原理、设计方法及其扩展方式; 2. 掌握运算标志位的含义及其实现机制; 3. 深入理解补码一位乘法器的内部结构和工作流程; 4. 认识算术逻辑单元(ALU)的基本构成,并掌握基本数据通路的设计过程。
  • Logisim
    优质
    《计算机组成原理实验(Logisim)》是一门利用Logisim软件进行计算机硬件设计与模拟的课程,帮助学生理解计算机系统底层架构和工作原理。 逻辑仿真软件Logisim用于计算机组成原理实验的教学与实践。通过该工具学生可以设计和验证数字电路的基本概念以及计算机系统的核心组成部分。这些实验有助于加深对数据路径、控制单元和其他关键硬件组件的理解,并且能够让学生在虚拟环境中进行复杂的逻辑设计,从而增强他们的动手能力和理论知识的结合应用能力。
  • 优质
    本实验为《计算机组成原理实验》系列之一,专注于运算器功能验证与性能测试。通过该实验,学生将深入理解算术逻辑单元(ALU)的工作机制及其实现的基本运算操作。 《计算机组成原理实验——运算器实验》 本实验主要围绕算术逻辑运算器74LS181展开,旨在让学生掌握基本的算术、逻辑运算及串行乘法操作。作为一款具备进位输入与输出功能的8位运算器,74LS181可执行多种类型的计算任务。 在实验过程中,通过拨码开关将数据经由三态门(型号为74LS244)传输至总线BUS,并利用数码显示管展示结果。此外,使用两个寄存器REG_0和REG_1来保存中间运算值与临时信息,这两个寄存器分别由8位触发器构成。 具体来说,控制信号ALU_S0、S1、S2、S3、M以及CN共同决定了74LS181的工作模式。例如,在执行A加B的操作时需将这些信号设置为特定值:当S3 S2 S1 S0=1001,且M和CN均为高电平时;而在进行A减B的运算中,则需要调整至另一组设定(即S3 S2 S1 S0=0110, M与CN均设为低)。同时,通过控制M信号可以判断数据是作为有符号数还是无符号数处理。 实验操作步骤包括启动仿真软件、手动设置输入值并通过改变控制参数来执行不同类型的运算。例如,在加法和减法规则下A和B被视为带符号整数;而在逻辑计算中它们被视作位模式进行对比或组合。观察并记录输出端F及标志位CF(进位/溢出)、ZF(结果是否为零)以及SF(结果的正负标识符)的状态变化。 此外,实验还涵盖了一项串行乘法运算任务,通过手动操控ALU通道实现这一过程:将被乘数和乘数分别加载到REG_0与DRB中,并按照既定步骤执行“累加-移位”算法。该环节有助于加深对基于此原理的计算方法的理解。 实验报告部分会详细列出不同控制信号组合下的运算结果,同时对其进行了分类讨论:比如当S3 S2 S1 S0=0001且CN设为高电平时,无论M为何值都将进行有符号数操作。此外还指出了一些仅依赖单个输入或与任何输入都不相关的计算类型。 通过此实验,学生不仅能深入理解74LS181运算器的工作机制,还能掌握计算机内部数据处理的基本流程——包括如何利用控制信号执行各种不同的算术和逻辑指令。这对于学习计算机组成原理的基础知识具有重要意义。
  • 头歌CIRC报告
    优质
    本实验为《头歌计算机组成原理》课程中的第六次实验,主要内容是使用CIRC工具进行实践操作,并完成相关的实验报告。学生将深入理解计算机组成原理并通过实际操作巩固理论知识。 该文档包含了头歌六次实验所需的全部CIRC文件及对应的实验报告,并附有部分实验的相关资料。此外,还包括LOGISM万能表格以及一些实验的PDF指导文件。如果遇到问题,欢迎大家在评论区相互讨论或直接与我联系,我会尽力提供帮助。
  • :汉字编Logisim(华中科技大学)
    优质
    本实验为华中科技大学《计算机组成原理》课程中的第二次实践环节,旨在通过使用Logisim工具探索和理解汉字编码机制及其在计算机系统架构中的应用。参与者将深入学习并动手操作,以增强对汉字编码转换过程的理解以及提高逻辑电路设计能力。 观看慕课第三章数据表示实验: 1. 在 data-EduCoder-3-23.circ 中完成国标转区位码实验和汉字显示实验。 观看慕课第五章存储系统设计: 1. 存储系统实验基本框架 2. 汉字字库存储扩展实验(字扩展) 3. MIPS RAM 设计 4. MIPS 寄存器文件设计
  • 器实
    优质
    本实验为《计算机组成原理》课程中的第一部分——运算器实验,旨在通过实际操作让学生理解并掌握基本算术和逻辑运算的功能与实现方式。 一、算术逻辑运算器 1. 实验目的与要求: 1. 掌握74ls181单元算术逻辑运算器(ALU)的工作原理。 2. 理解并掌握简单运算器的数据传送通道。 3. 使用由74ls181等组合逻辑电路组成的运算功能发生器,验证其运算功能。 4. 能够根据给定数据完成实验中指定的算术/逻辑运算任务。 5. 理解算术逻辑运算器实验的基本原理。
  • 思考驱).docx
    优质
    该文档介绍了第四次以思考为核心的计算机组成原理实验课程内容,强调理论与实践相结合,旨在通过深入分析和动手操作提升学生对计算机硬件结构的理解。 计算机组成原理实验4主要包括对计算机硬件结构的理解与实践操作。通过这个实验,学生可以深入了解CPU、内存以及输入输出设备的工作机制,并且能够设计简单的指令集架构系统。此外,该实验还涵盖了一些基本的电路知识和技术技能的应用,旨在帮助学习者建立起扎实的基础理论和实践经验。
  • 基于Logisim》实资料.zip
    优质
    本资源为《计算机组成原理》课程设计,包含基于Logisim软件的实验材料和案例分析,旨在帮助学生理解并实践计算机硬件结构与功能。 在学习《计算机组成原理》课程期间,学校安排了一些实验任务。这些实验基本涵盖了该课程的主要内容。上传的资源仅包含工程文件,请谨慎下载。
  • 优质
    《计算机组成原理实验(一)》是一门针对计算机科学专业的基础课程,旨在通过实践加深学生对计算机硬件结构和工作原理的理解。通过一系列实验操作,帮助学习者掌握数据表示、指令系统及存储体系等核心概念,为后续深入学习打下坚实的基础。 ### 计算机组成原理实验一:74LS181芯片详解 #### 实验背景与目的 在《计算机组成原理》课程的学习过程中,实验环节是加深理论理解、提升实践能力的重要组成部分。本次实验——“计算机组成原理实验一”,旨在通过验证74LS181芯片的功能来帮助学生更好地理解算术逻辑单元(ALU)的工作原理及其在计算机系统中的应用。具体目标包括: 1. **掌握算术逻辑单元(ALU)的工作原理**:ALU是计算机内部处理数据的核心部件之一,了解其工作机制对于深入理解计算机系统至关重要。 2. **熟悉简单运算器的数据传送通路**:数据如何在ALU内以及与其他部件之间传输,是构建高效计算机系统的基石。 3. **绘制逻辑电路图及布置接线图**:通过实际绘制电路图并进行接线,不仅能够直观地理解电路的工作原理,还能培养良好的实践技能。 4. **验证4位运算功能发生器(74LS181)的组合功能**:74LS181是一种广泛应用于ALU设计中的集成电路,通过实验验证其多种算术和逻辑运算功能。 #### 实验原理:74LS181芯片介绍 74LS181是一款4位算术逻辑单元芯片,能够实现16种不同的算术和逻辑运算。该芯片具有以下特点: - **M状态控制端**:用于选择逻辑运算或算术运算模式。 - **S3S2S1S0运算选择控制**:这四个引脚共同决定了芯片将执行哪种特定的算术或逻辑运算。 - **运算数输入**:A3A2A1A0和B3B2B1B0分别表示两个4位的运算数输入。 - **进位输入与输出**:Cn用于指定是否需要考虑最低位的进位输入,而Cn+4则表示由芯片产生的进位信号。 - **运算结果输出**:F3F2F1F0表示运算后的4位结果输出。 根据74LS181芯片的功能表,我们可以看到不同的运算模式: - 当M=1时,芯片执行逻辑运算。 - 当M=0时,芯片执行算术运算。 每种运算模式又根据S3S2S1S0的不同组合,可以实现多种不同的算术或逻辑运算。例如: - **算术运算**:如加法、减法等。 - **逻辑运算**:如按位与、按位或、按位异或等。 #### 实验内容与步骤 实验内容主要分为两部分: 1. **验证74LS181型4位ALU的逻辑算术功能**:通过设置不同的S3S2S1S0值以及输入不同的数据,验证芯片能否正确执行相应的算术和逻辑运算。 2. **绘制逻辑电路图及布线**:根据实验要求,绘制出符合实验需求的逻辑电路图,并进行整洁的布线。 #### 实验数据与分析 实验中使用了具体的数值(如AH、5H、FH等十六进制数),并通过改变S3S2S1S0的状态以及M的状态,得到了不同的运算结果。通过对这些数据的分析,可以验证74LS181芯片确实能够准确地执行预定的算术和逻辑运算。 #### 总结与心得体会 通过本次实验,不仅加深了对74LS181芯片功能的理解,还提高了使用仿真软件进行电路设计和调试的能力。此外,在实验过程中遇到了一些挑战,比如调节进位时数值保持不变的问题,这促使我们更加细致地检查电路连接和设置,从而增强了问题解决的能力。这次实验是一次非常有价值的实践经历,它不仅巩固了理论知识,也为将来从事相关领域的工作打下了坚实的基础。 #### 进一步探索 在完成基本实验后,可以进一步探讨74LS181芯片在不同应用场景下的表现,或者尝试使用更复杂的仿真工具来模拟更大型的运算器结构,以此深化对计算机硬件系统的理解。