Advertisement

使用TensorFlow实现残差网络(MNIST数据集)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目利用TensorFlow框架在MNIST数据集中实现了残差网络,展示了如何通过添加跳连结构来解决深层神经网络中的梯度消失问题,并验证了其相较于传统卷积神经网络的优越性能。 本段落主要介绍了如何使用TensorFlow实现残差网络(ResNet)的方法,并通过MNIST数据集进行了演示。该内容具有很好的参考价值,希望能对大家有所帮助。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 使TensorFlowMNIST
    优质
    本项目利用TensorFlow框架实现了经典的残差神经网络,并应用于MNIST手写数字识别任务中。通过深入探究模型结构优化及参数调整,展示了残差网络在处理小规模图像分类问题上的优越性能和效率。 残差网络是何凯明大神的重要作品,在深度学习领域取得了显著的效果,并且可以构建非常深的模型,例如达到1000层。然而实现起来并不复杂,这里我们使用TensorFlow框架来基于MNIST数据集创建一个浅层次的残差网络。 图中实线连接部分表示通道相同的情况,比如第一个粉色矩形和第三个粉色矩形都是3x3x64的特征图,在这种情况下计算方式为H(x)=F(x)+x。虚线连接的部分则代表了不同的通道情况,例如第一个绿色矩形(3x3x64)与第三个绿色矩形(3x3x128),在这种情形下使用的是H(x)=F(x)+Wx的公式,其中W表示用于调整维度大小的卷积操作。
  • 使TensorFlowMNIST
    优质
    本项目利用TensorFlow框架在MNIST数据集中实现了残差网络,展示了如何通过添加跳连结构来解决深层神经网络中的梯度消失问题,并验证了其相较于传统卷积神经网络的优越性能。 本段落主要介绍了如何使用TensorFlow实现残差网络(ResNet)的方法,并通过MNIST数据集进行了演示。该内容具有很好的参考价值,希望能对大家有所帮助。
  • TensorFlowMNIST卷积神经Python代码
    优质
    这段Python代码使用了TensorFlow框架来构建和训练一个用于识别手写数字(来自MNIST数据集)的卷积神经网络模型。 这段文字描述的内容是基于TensorFlow的MNIST数据集卷积神经网络代码,涵盖了从数据提取到精度测试的所有步骤,非常适合初学者学习参考。
  • 使TensorFlowMNIST上训练的卷积神经
    优质
    本项目利用TensorFlow框架,在经典的MNIST手写数字数据集上训练了一个卷积神经网络模型,实现了高精度的手写数字识别。 这是训练的完整代码,具体的文档说明请参阅本人博客中的相关介绍。
  • STResNet: 基于TensorFlow的深度时空(ST-ResNet)
    优质
    STResNet是一款基于TensorFlow框架开发的深度学习模型,专为处理时空序列数据设计,采用创新性的残差网络结构优化长短期时空依赖性建模。 TensorFlow中的ST-ResNet 深时空残留网络(ST-ResNet)是基于一本书的TensorFlow实现的一个端到端深度学习模型。该模型利用时间紧密度、周期性和趋势性等独特属性,来预测城市地区人群的流入和流出。 ### 模型架构 先决条件: - Python 2.7 - TensorFlow 1.8 - NumPy 1.14.2 ### 使用方法 要创建ST-ResNet架构的TensorFlow计算图,请运行以下命令: ``` $ python main.py ``` ### 代码组织结构 该模型使用面向对象编程(OOP)和广泛的模块化实现。 文件结构如下: `main.py`:此文件包含主程序。在这里生成了ST-ResNet的计算图,并启动会议进行训练。 `params.py`:用于声明超参数的Params类在此文件中定义。 `modules.py`:该文件包含了以模块化方式编写的辅助函数和自定义神经层,采用了面向对象编程范式。
  • 使TensorFlowAlexNet对MNIST的训练
    优质
    本项目利用TensorFlow框架复现经典卷积神经网络AlexNet,并应用于手写数字识别任务(MNIST),展示了深度学习模型在图像分类问题中的强大能力。 使用TensorFlow实现AlexNet训练MNIST数据的Python代码可以按照以下步骤进行: 1. 导入必要的库: ```python import tensorflow as tf from tensorflow.keras import layers, models ``` 2. 定义模型架构,这里以简化版的AlexNet为例。注意原论文中的网络结构可能需要根据实际问题和数据集调整。 ```python def create_model(): model = models.Sequential() # 第一层卷积层 model.add(layers.Conv2D(96, (11, 11), strides=(4, 4), activation=relu, input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((3, 3), strides=2)) # 第二层卷积层 model.add(layers.Conv2D(256, (5, 5), padding=same, activation=relu)) model.add(layers.MaxPooling2D((3, 3), strides=2)) # 第三层到第五层为全连接前的卷积操作,这里简化处理。 # 全连接层 model.add(layers.Flatten()) model.add(layers.Dense(4096, activation=relu)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(4096, activation=relu)) model.add(layers.Dropout(0.5)) # 输出层 model.add(layers.Dense(10, activation=softmax)) return model ``` 3. 编译模型: ```python model = create_model() model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[accuracy]) ``` 4. 准备数据集并训练模型。这里使用MNIST数据集。 ```python # 加载MNIST数据集 mnist = tf.keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images[..., None] / 255.0 # 归一化并添加通道维度 test_images = test_images[..., None] / 255.0 # 训练模型 model.fit(train_images, train_labels, epochs=10) ``` 以上就是使用TensorFlow实现AlexNet训练MNIST数据的基本步骤,可以根据具体需求进行调整和优化。
  • 使TensorFlow加载MNIST的方法
    优质
    本篇文章将详细介绍如何利用TensorFlow框架高效地加载和处理经典的MNIST手写数字数据集,为机器学习入门者提供实用指南。 在机器学习领域特别是深度学习范畴内,MNIST数据集是一个经典的图像识别数据库,包含0-9的手写数字样本,并且经常被用来训练与测试各种图像分类算法。 本教程将引导你如何利用TensorFlow库来加载并处理MNIST数据集。首先需要导入一些必要的Python库:`numpy`用于数组操作,`tensorflow`作为深度学习框架的实现工具,以及`matplotlib.pyplot`以图形化方式展示图片: ```python import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ``` 接下来使用TensorFlow提供的一个模块来导入MNIST数据集。这个功能允许我们直接下载和解压指定路径下的数据文件(这里假设你的数据位于“F:mnistdata”目录): ```python from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(F:/mnistdata, one_hot=True) ``` 参数`one_hot=True`表明标签会以独热编码形式呈现,即每个数字(0-9)将被转换成长度为10的一维向量,并且仅有一个元素值设为1而其余全为零。这有助于神经网络模型的学习过程。 变量`mnist`包含训练集和测试集的数据与标签信息;我们可以查看它们的大小: ```python print(mnist.train.num_examples) # 训练数据的数量 print(mnist.test.num_examples) # 测试数据的数量 ``` 然后,我们分别提取出训练集及测试集中图像与对应的标签: ```python trainimg = mnist.train.images # 提取训练样本的图片部分 trainlabel = mnist.train.labels # 提取训练样本的标签信息 testimg = mnist.test.images # 同样操作于测试数据集上 testlabel = mnist.test.labels # 提取测试集中的标签向量 ``` 这些图像被存储为一维数组,每张图片长度是784(即28*28像素)。为了便于展示,我们需要将它们重塑成原始的二维格式: ```python nsample = 5 # 想要显示的样本数 randidx = np.random.randint(trainimg.shape[0], size=nsample) for i in randidx: curr_img = trainimg[i, :].reshape(28, 28) curr_label = np.argmax(trainlabel[i]) plt.matshow(curr_img,cmap=plt.get_cmap(gray)) plt.title(f{i}th Training Data, label is {curr_label}) plt.show() ``` 此代码段中,`np.random.randint()`函数用于随机挑选训练集中的样本;`reshape(28, 28)`将一维数组转换回原始的二维图像形式;而使用`plt.matshow()`, `plt.title()`, 和 `plt.show()`来展示并标注这些图片。 这个简短的例子展示了如何在TensorFlow框架中加载及预处理MNIST数据集,以便于之后构建与训练深度学习模型。对于初学者而言,这提供了一个很好的起点去理解和实践图像分类任务中的各种算法和技术。随着经验的积累,你可以尝试建立更复杂的网络结构(如卷积神经网络CNN),以进一步提高手写数字识别系统的准确度和性能。
  • Python的手写字识别(使神经MNIST).zip
    优质
    本项目为一个利用Python编程语言及神经网络技术进行手写数字识别的应用程序。通过调用广泛使用的MNIST数据集,训练模型以达到高精度的识别效果,并提供源代码供学习交流使用。 这段文字描述了一个项目,该项目使用了MNIST手写数字数据集,并具备可视化展示功能。整个项目的代码是用Python 3编写的,并且重要部分都添加了注释以便于理解和维护。
  • 使TensorFlow和sklearn在CIFAR-10前馈神经
    优质
    本项目利用TensorFlow和sklearn库,在CIFAR-10图像数据集上搭建并训练了前馈神经网络,实现了对图像分类的高效处理。 本段落介绍了使用TensorFlow和sklearn在CIFAR-10数据集上实现的前馈神经网络,并展示了各自的结果图片。
  • Hopfield-MNIST:基于scikit-learn的HopfieldMNIST上的
    优质
    本项目利用Python库scikit-learn实现了Hopfield神经网络,并应用于经典的手写数字识别数据集MNIST,展示了其联想记忆特性。 Hopfield-mnist 包含两个Python文件(mnist.py 和 hopfield4gif.py)。mnist.py 实现了一些获取和破坏的功能。另一方面,hopfield4gif.py 实现了训练和推断算法(即外部产品构造和同步更新规则)。给定训练数据(即MNIST手写数字)和偏差项后,可以确定Hopfield网络的所有参数,该网络能够从损坏的数据中重建原始的训练数据。主要功能输出由偏置项参数化的重建数据集合(共80张png图像),这些png图像用于制作由偏置项参数化的gif动画。