Advertisement

基于超声波的密闭容器液位传感器设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目致力于开发一种用于密闭容器中的高效、准确的液位监测系统,采用超声波技术实现非接触式测量,适用于各种工业和家庭应用场景。 针对现有超声波液位检测方法存在的安装需对容器开孔、破坏容器结构以及受挥发性介质影响的问题,设计了一种非接触式超声波液位传感器,并分析了其超声波频率的选取及具体硬件电路实现方案。该传感器基于超声波液位检测原理,采用AT89S52作为控制核心和收发一体超声波换能器,并选用nRF2401无线收发模块,实现了密闭容器内液位数据的测量与无线传输。测试结果显示,该传感器具有较高的测试精度,相对误差在3%以内,能够满足现场实时液位监测的需求。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目致力于开发一种用于密闭容器中的高效、准确的液位监测系统,采用超声波技术实现非接触式测量,适用于各种工业和家庭应用场景。 针对现有超声波液位检测方法存在的安装需对容器开孔、破坏容器结构以及受挥发性介质影响的问题,设计了一种非接触式超声波液位传感器,并分析了其超声波频率的选取及具体硬件电路实现方案。该传感器基于超声波液位检测原理,采用AT89S52作为控制核心和收发一体超声波换能器,并选用nRF2401无线收发模块,实现了密闭容器内液位数据的测量与无线传输。测试结果显示,该传感器具有较高的测试精度,相对误差在3%以内,能够满足现场实时液位监测的需求。
  • CAV444电
    优质
    本设计介绍了CAV444型电容式液位传感器的应用与开发,结合了先进的电容传感技术来实现高精度、宽范围的液位检测。通过优化电路结构和算法处理,提高测量准确性和稳定性,适用于工业自动化及环境监测等领域。 本段落介绍了电容式液位传感器的测量原理,并提出了一种基于新型电容测量集成电路芯片CAV444的设计方案。测试结果显示,该传感器性能稳定、测量精度高且误差小,能满足低浓度瓦斯输送安全监测系统中的水位监测需求。
  • 单片机技术在高压测控中应用.pdf
    优质
    本文介绍了利用单片机和超声波技术,在高压密闭容器中实现精确液位测量与控制的设计方案,适用于工业自动化领域。 在现代工业应用中,准确测量并实时控制密闭容器内液体的液位是保证生产安全和产品质量的关键技术之一。尤其是在化学工业中,由于液体常具有易爆炸、易挥发、强腐蚀或有毒等特性,传统的浮球法或电容式液位计存在一定的局限性和风险。因此,开发一套既精确又可靠且不直接接触液体的液位测控系统显得尤为重要。 本项目的核心技术是利用超声波进行非接触式测量。超声波传感器通过电压激励产生机械振动,其高频率和短波长的特点使其具有较强的定向传播能力,并能有效穿透各种介质,在遇到界面时会产生明显的反射回波。这使得它非常适合用于密封容器内的液位检测。 超声波传感器的优势包括对液体及不透明固体的强穿透力以及在遇杂质或界面上产生的清晰回波,从而实现精确的距离测量。根据工作原理和应用场合的不同,市场上有多种类型的超声波探头可供选择,例如直探头、斜探头和液浸式探头等。 系统硬件设计的核心是基于AT89S51单片机的信号处理与控制电路,并配合专用的TL851(数字型)和TL852(模拟型)超声波收发器芯片。这些组件协同工作,使得测量过程更加精准可靠。 软件方面,程序包括主程序和中断服务程序两部分:前者负责初始化、控制信号发送与接收顺序以及记录发射时间;后者则处理读取的时间值、计算距离并显示结果。通过精确的超声波信号传输时序设计,系统能够准确测定探头至液面的距离,并据此获得实时液位信息。 在安装使用中,对于铁质容器可以采用磁性吸盘固定涂有硅脂的探头;若需在同一水平线上测量多个点,则可直接粘贴探头。这样的安装方法简便且安全可靠,避免了接触液体所带来的风险。 通过研究和应用超声波液位技术,本项目设计出了一套高精度、高可靠的测控系统,能够满足化学工业中对精确度及稳定性的需求,为生产过程的安全性提供了有力保障,并具有广泛的应用前景。
  • Arduino雷达电路方案
    优质
    本设计提出了一种基于超声波传感器与Arduino平台的雷达电路方案,旨在实现精确的距离测量和物体检测功能。 该设备是一个使用超声波传感器制作的雷达系统。硬件组件包括Arduino UNO、Genuino UNO各一个,蜂鸣器一个,SG90微伺服电机一个,HC-SR04(通用)超声波传感器一个,跳线一组,面包板一块以及红色5毫米LED灯一个。软件方面则使用了Arduino IDE。 该雷达系统能够旋转180度并检测前方的障碍物。通过超声波传感器的帮助,它可以测量物体与传感器之间的距离和角度。如果遇到障碍物,它会发出警报提醒用户,并提供相应的数据信息。
  • 测距(myrio版).rar_myrio_测距_LabVIEW_
    优质
    本资源为超声波测距传感器在Myrio平台上的应用,包含使用LabVIEW编程实现的详细教程与代码示例,适用于学习和项目开发。 测距超声波myrio labview
  • 2015年电
    优质
    本项目专注于2015年的电容式液位传感器设计,旨在开发高精度、低功耗且适用于多种液体测量场景的新型传感设备。 我们设计了一种基于单片机的电容式液位传感器,主要由单片机系统、555定时器以及液晶显示屏组成。其中,单片机作为核心控制部件,负责整个系统的运行;它接收来自555定时器产生的方波信号,并读取其频率值。接着将该频率转换为相应的液位高度信息,并通过LCD1602液晶显示器进行显示。此外,在软件层面还进行了液位高度的计算工作,以减少电容与频率之间的线性误差问题,从而实现了算法设计的目标。
  • STM32.zip_32_STM_STM32_
    优质
    本资源包包含STM32微控制器与超声波传感器应用的相关资料,适用于学习和开发基于STM32平台的超声测距项目。 本程序用于实现超声波传感器探测物体的距离,并将距离传送给STM32。
  • 测距系统
    优质
    本项目设计了一种基于超声波传感器的测距系统,能够精确测量物体间的距离。通过微控制器处理信号,该系统适用于多种室内与室外场景。 基于超声波传感器的测距系统设计包括原理电路等内容,资料齐全。
  • ArduinoHC-SR04电路
    优质
    本项目介绍如何使用Arduino平台进行HC-SR04超声波传感器的电路搭建与编程,实现距离测量功能,适用于机器人避障、智能家具等领域。 您将学习如何连接超声波传感器HC-SR04与Arduino板,并可以用于测量距离或其它用途。该传感器能够发射频率为40kHz的超声波脉冲,当这些脉冲遇到物体时会反射回模块中。通过计算传播时间和声音在空气中的速度(340 m/s 或 0.034 cm/微秒),我们可以得出从传感器到最近障碍物的距离。 HC-SR04有四个引脚:VCC、TRIG、ECHO和GND,分别代表电源正极、触发脉冲输出端口、回声信号输入以及地线。其中,VCC连接5伏特的电压源;而TRIG与ECHO可以任意选择Arduino板上的数字I/O接口进行连接。 完成此项目所需的主要材料包括: - Arduino UNO R3 CH340(或任何其他类型的Arduino开发板) - 超声波传感器HC-SR04 - 公对公跳线 - 面包板 为了触发超声波脉冲,需要将TRIG引脚设置为高电平10微秒。这会发射一个8周期的信号,并且回音针(ECHO)将会输出反射回来的时间值。 在Arduino编程中,首先定义传感器连接到Arduino上的具体数字端口——例如:EchoPin接D2, TrigPin接D3;然后声明变量distance和duration用于存储计算结果。接下来,在循环里先将Trig引脚设置为低电平(持续时间小于2微秒),随后将其设为高电平10微秒以触发超声波发送。 使用pulseIn函数读取回音针的脉冲长度,该函数接收两个参数:ECHO端口名称及HIGH或LOW状态。在这里,我们设定当信号变为高时开始计时,在低点停止计数,并返回时间值(单位为微秒)。 为了计算距离,我们将接收到的时间乘以0.034再除以2,得到厘米单位的距离。最后在串行监视器上显示测量结果。 步骤如下: 1. 按照示意图连接硬件。 2. 在Arduino IDE中编写或导入代码。 3. 设置开发板为Arduino Uno(工具>板)及正确的COM端口(工具>端口) 4. 上传程序至Arduino 5. 使用串行监视器查看数据,确保波特率为9600 将物体放置在传感器前方并观察测量结果。您还可以使用手动卷尺验证这些读数的准确性。 如果需要显示于LCD屏幕上,则需按照另一张接线图连接,并且上传相应的代码。
  • STM32HC_SR04驱动.zip
    优质
    本项目为一个利用STM32微控制器实现对HC_SR04超声波测距模块进行控制和数据读取的设计方案。包含硬件连接与软件编程实现,适用于嵌入式系统开发学习。 当探测距离小于特定数值时,LED会被点亮。这个安全数值通过宏定义来设定。微控制器使用的是STM32F103VET6型号。