Advertisement

STM32视觉循迹机器人。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用STM32F427作为核心控制芯片,并借助openMV平台进行摄像头图像数据的传输,从而实现了巡线功能。该系统默认采用黑线寻迹算法,电机驱动则采用减速电机。提供的完整杀机代码,涵盖了摄像头图像处理模块以及按键控制功能,旨在为学习者提供参考,或为其他项目的移植提供支持。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    机器人视觉是指赋予机器人感知和理解周围环境的能力的技术领域,通过摄像头和其他传感器收集图像数据,运用计算机视觉算法进行处理分析,使机器人能够识别物体、导航定位及执行复杂任务。 如何使用人脸识别与物体识别功能结合ROS(Robot Operating System)及OpenCV进行实现,并提供launch启动文件代码以及对应的py文件代码的示例。
  • 基于OpenCV的小车
    优质
    本项目设计了一款基于OpenCV技术的视觉循迹小车,通过摄像头识别黑线路径信息,运用算法控制车辆沿设定路线自动行驶。 使用香橙派zero2处理图像,下位机采用stm32f103c8t6进行PID控制寻线,并通过OpenCV识别技术实现串口收发验证功能。
  • 【海外开源】STM32 OpenMV
    优质
    《海外开源》栏目介绍了一款专为STM32微控制器设计的机器人视觉模块——OpenMV。此摄像头结合了图像处理和机器学习功能,适用于各类机器人视觉应用。 STM32 机器人视觉摄像机OpenMV Cam设计结合了Python编程功能,是一个很好的学习资料。该项目的开源代码可以在相关平台上找到。
  • 创新——小车
    优质
    循迹小车是一款基于创新技术设计的智能机器人,能够自动识别并沿着预定路径行驶。它结合了传感器技术和编程算法,在教育、娱乐及实际应用场景中展现出巨大潜力。 奇颖机器人——循迹小车是一款创新的智能设备。它能够自动识别并沿着预定路径行驶,适用于多种应用场景。该产品结合了先进的传感器技术和精准的算法控制,为用户提供了便捷的操作体验和高效的解决方案。
  • 系统与的比较-
    优质
    本文章对机器视觉系统和人类眼睛的视觉功能进行了详细的对比分析,探讨了两者在成像原理、处理速度及准确性等方面的异同。通过这种比较,旨在加深读者对于机器视觉技术的理解,并为其实际应用提供理论支持。 人的视觉系统与机器视觉系统的对比: - 适应性:人类的视觉系统在复杂多变的环境中表现出很强的适应能力,能够识别各种目标;相比之下,机器视觉系统的适应性较差,在复杂的背景或环境变化中容易受到影响。 - 智能水平:人具有高度智能和逻辑分析及推理的能力,可以总结规律并有效应对变化的目标。尽管现代技术如人工智能和神经网络让机器具备了一定的学习能力,但它们在识别动态目标方面仍不及人类的视觉系统灵活高效。
  • 优质
    机器视觉是一种利用计算机模拟人类视觉能力的技术,广泛应用于工业自动化、质量检测等领域,通过图像处理和分析实现物体识别、测量等功能。 ### 机器视觉与双目立体视觉在机器人导航中的应用 #### 一、机器视觉与双目立体视觉概览 机器视觉是指使用计算机或机器来解释和理解来自传感器的图像输入,通过图像处理及模式识别技术使设备能够“看懂”并分析其环境。其中,双目立体视觉是机器视觉的一个重要分支,它模仿人类双眼的工作原理,利用两台相机从不同视角捕捉同一场景,并计算出物体深度信息以构建三维空间模型。 #### 二、双目立体视觉在机器人导航中的优势与挑战 **优势:** 1. **隐蔽性高:** 双目视觉系统是一种被动式传感器,在执行特殊任务(如军事侦察)时,不会主动发射能量,从而提高了隐蔽性和安全性。 2. **灵活性和适应性:** 它可以根据环境条件灵活调整导航精度及实时性能,提供更定制化的解决方案。 3. **丰富的信息获取:** 双目视觉能提供更多关于物体深度、距离等细节的信息,帮助机器人更好地理解周围环境并做出准确决策。 **挑战:** 1. **计算延迟问题:** 处理双目立体图像通常需要复杂的算法和大量数据处理,可能造成系统响应时间较长。 2. **精确地图生成难度大:** 目前的技术还难以在保证精度的同时快速构建三维地图,这对机器人自主导航提出了技术挑战。 #### 三、关键技术 1. **数字图像获取:** 使用两个相机捕获环境的二维图像数据。 2. **噪声过滤与边缘分割:** 对采集到的数据进行预处理以提升质量,减少干扰因素并突出关键特征边界。 3. **特征提取和立体匹配:** 辨识出图像中的重要特征,并在两张图片间找到对应的点对,这是计算深度信息的基础步骤。 4. **生成深度图:** 根据上述的对应关系来确定每个像素的距离值,形成完整的深度地图。 5. **三维重建与表示方法:** 结合相机位置和深度数据构建环境模型,并采用合适的格式进行存储展示。 6. **导航算法设计:** 例如路径规划等技术,在已知的地图基础上寻找最优路线并绕开障碍物。 #### 四、研究重点及创新点 本项目关注于双目立体视觉系统的整体优化以及三维地图生成的改进。提出了一种基于任务需求和反馈机制简化处理流程的方法,以实现快速响应与导航精度之间的平衡;在构建3D模型方面,则通过深度图、原始图像对等多类型数据综合应用,采用特征反向匹配策略逐步完成点线面体转换过程,并加入坐标转换及错误校验环节确保最终地图的准确性和完整性。 #### 五、结论和未来展望 双目立体视觉在机器人导航中具有巨大潜力,特别是在未知环境中的自主探索能力和障碍物规避能力方面。然而为了克服实时性与精确建图方面的挑战,未来的科研工作需要进一步优化图像处理算法以提高效率,并开发出更高效的地图生成技术来满足日益增长的应用需求。随着人工智能和机器视觉领域的不断进步与发展,我们期待未来机器人将更加智能自主地适应复杂多变的环境条件,为人类社会带来更多的便利与价值。
  • MATLAB在学与控制中的算法基础.rar_gco_学__MATLAB_控制
    优质
    本资源深入探讨了MATLAB在机器人学和机器视觉控制领域的应用,涵盖了一系列核心算法的基础知识。适合于研究者、工程师及学生学习使用。包含gco算法等相关内容。 这本书介绍了机器学习及机器视觉的控制算法应用,并探讨了Matlib的相关内容。希望对您有所帮助。
  • FANUC编程
    优质
    《FANUC机器人视觉编程》是一本专注于讲解如何使用FANUC机器人的视觉系统进行高效编程与应用的技术书籍。书中详细介绍了从基础理论到实践操作的知识点,帮助读者掌握先进的机器人视觉技术。 国内制造业少见成功应用智能模糊抓取3D识别机器人的技术,并且完整的机器人程序代码也较为稀缺。
  • 技术.pdf
    优质
    本书《机器人视觉技术》深入浅出地介绍了机器人视觉的基本原理与应用技术,涵盖图像处理、特征识别和深度学习等关键领域,旨在帮助读者掌握如何利用视觉信息提升机器人的自主性和智能化水平。 机器人视觉技术是指利用计算机视觉技术和方法使机器人能够感知、理解和处理周围环境中的图像或视频数据的能力。这项技术在工业自动化、无人驾驶汽车以及服务型机器人的应用中发挥着重要作用,有助于提高生产效率和安全性,并为人们的生活带来便利。 希望这段关于机器人视觉技术的介绍对大家有所帮助。
  • 伺服系统
    优质
    机器人视觉伺服系统是一种利用视觉信息进行控制反馈的机器人控制系统,能够实现对目标物体的精确跟踪和定位,广泛应用于工业自动化、医疗、服务等领域。 机器人视觉伺服采用混合控制方法,基于图像处理并利用雅克比矩阵以及Harris角点检测技术。