Advertisement

基于机器视觉的移动式裂纹检测机器人.rar

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目设计了一种基于机器视觉技术的移动式裂纹检测机器人,能够自动识别和记录材料表面细微裂纹信息,提高工业检测效率与精度。 基于机器视觉的可移动裂纹检测机器人是一款结合了最新图像处理技术和机器人嵌入式技术的产品。该设备针对隧道、桥梁、道路及大坝等行业中的裂纹分析需求,提供了一种无人智能化作业方案,旨在替代传统的人工操作方式。它解决了人工操作危险系数高、成本高昂且效率低下的问题。 驱动模块使用C语言和MDK编程实现自动避障功能;而机器视觉模块则采用Python与OpenCV技术进行图像处理,通过CCD摄像头收集的原始数据经过灰度化处理后,再利用滤波器生成最终图像。该设计支持两种控制模式:一是自动检测模式,在这种情况下机器人采集到的图像会实时显示在LCD屏幕上,并保存至机器人的SD卡中以备后续分析;二是监控检测模式,则通过树莓派USB摄像头获取的数据经由WIFI模块传输至上位机,同时将裂纹位置坐标信息也发送给上位机。此产品具备成本低、功耗小及适用范围广等优点。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .rar
    优质
    本项目设计了一种基于机器视觉技术的移动式裂纹检测机器人,能够自动识别和记录材料表面细微裂纹信息,提高工业检测效率与精度。 基于机器视觉的可移动裂纹检测机器人是一款结合了最新图像处理技术和机器人嵌入式技术的产品。该设备针对隧道、桥梁、道路及大坝等行业中的裂纹分析需求,提供了一种无人智能化作业方案,旨在替代传统的人工操作方式。它解决了人工操作危险系数高、成本高昂且效率低下的问题。 驱动模块使用C语言和MDK编程实现自动避障功能;而机器视觉模块则采用Python与OpenCV技术进行图像处理,通过CCD摄像头收集的原始数据经过灰度化处理后,再利用滤波器生成最终图像。该设计支持两种控制模式:一是自动检测模式,在这种情况下机器人采集到的图像会实时显示在LCD屏幕上,并保存至机器人的SD卡中以备后续分析;二是监控检测模式,则通过树莓派USB摄像头获取的数据经由WIFI模块传输至上位机,同时将裂纹位置坐标信息也发送给上位机。此产品具备成本低、功耗小及适用范围广等优点。
  • 技术鸭蛋
    优质
    本项目利用机器视觉技术,结合图像处理算法,实现对鸭蛋表面裂纹的高精度自动检测,提高生产效率和产品质量。 基于机器视觉的鸭蛋裂纹自动检测技术可以有效提高检测效率与准确性。该系统利用先进的图像处理和模式识别算法来分析鸭蛋表面的状态,快速准确地识别出存在细微裂纹的鸡蛋,从而避免了人工检查过程中可能出现的人为错误,并大大提高了生产过程中的自动化水平。
  • 【玻璃瓶MATLAB技术及源码(第4088期).mp4
    优质
    本视频详细介绍了如何利用MATLAB进行玻璃瓶裂纹检测的技术教程,包括机器视觉原理、编程实现及完整源代码分享。适合对工业检测感兴趣的开发者和研究人员学习参考。 Matlab研究室上传的视频均配有对应的完整代码,这些代码均可运行,并且经过验证确认可用,非常适合初学者使用。 1. 代码压缩包内容: - 主函数:main.m; - 调用函数:其他m文件;无需单独运行。 - 运行结果效果图; 2. 代码运行版本 使用Matlab 2019b可以正常运行。如遇问题,请根据提示进行修改,若无法解决可向博主咨询。 3. 运行操作步骤: 步骤一:将所有文件放入当前工作目录; 步骤二:双击打开main.m文件; 步骤三:点击运行按钮等待程序执行完毕以获取结果; 4. 仿真咨询 如需其他服务,可以联系博主或通过视频中的联系方式进行询问。 - 完整代码提供(博客或资源); - 复现期刊论文或参考文献内容; - Matlab程序定制开发; - 科研合作。
  • 缺陷
    优质
    本研究致力于开发和应用先进的机器视觉技术进行自动化缺陷检测,旨在提高工业生产中的质量控制效率与精度。通过图像处理、模式识别等方法,实现对产品表面及内部结构缺陷的精准识别与分类。 在当今社会,随着铁路运输的快速发展,确保铁路基础设施的安全性变得至关重要。作为基础构件之一的钢轨,在其安全性和可靠性方面起着决定性的角色。因此,对钢轨进行探伤检查尤为重要。 传统上,钢轨探伤主要关注内部和表面缺陷检测以预防事故的发生。然而,近年来由于生产工艺的进步,内部缺陷出现的概率已经大大降低,而表面缺陷导致的断裂事件却有所增加。面对这一现象,本段落提出了一种基于机器视觉技术的新型钢轨表面缺陷检测系统设计。 利用计算机模拟人类视觉功能进行图像处理和分析是机器视觉的核心理念,在此过程中可以实现高速、高精度且非接触式的自动化检查,显著提高了检测效率与准确性。该方案采用了动态阈值分割算法及缺陷区域提取算法等关键技术,能够有效识别钢轨表面的掉块和裂纹,并准确标定位置。 为实施这一系统,作者构建了一个模拟探伤平台。此平台采用高速线阵相机搭配辅助光源采集图像并通过千兆以太网实时传输至工控机进行处理。在软件层面,则使用了Halcon及Visual C#编写的应用程序来执行在线检测任务。实验结果显示,在100km/h的速度下,系统能够准确识别宽度为1mm的裂纹,并记录其位置。 钢轨表面缺陷主要分为两类:裂缝和滚动接触疲劳磨损,后者又细分为掉块与波纹磨损现象。鉴于超声探伤技术在应对这类问题时存在局限性,因此对疲劳磨损的检测显得尤为关键。 为了更精确地识别这些缺陷,本段落还详细分类了各种类型的钢轨表面损伤,并开发了一个可以实时获取并分析高速移动中钢轨图像的系统。该系统的硬件部分包括高速线阵相机和辅助光源;前者用于连续快速拍摄图片而后者则确保光线稳定以保证清晰度。所有捕获的数据都会通过千兆网传输至工控机,由内置软件进行处理、识别与定位。 此外,新开发出的人机界面能够直观展示检测结果及缺陷图像,使操作员可以清楚地了解各种类型和位置的损伤情况。实验表明,在100km/h的速度下系统依然能准确发现宽度仅为1mm的裂纹,并记录其具体信息,证明了该系统的可靠性和实用性。 总之,这一机器视觉技术在钢轨表面缺陷检测中的应用对铁路基础设施的安全运行至关重要。随着相关技术的进步与成熟,未来此类检查将更加智能化、自动化,并能够极大提高铁路运输的整体安全水平和可靠性。同时这项创新也有望拓展至其他行业如冶金或机械制造等领域中用于高精度的表面缺陷检测工作,从而促进各行业的健康发展。
  • 障碍物系统
    优质
    本系统利用机器人视觉技术进行实时障碍物检测与识别,旨在提高自主移动机器人的环境适应能力和安全性。 基于机器人视觉系统的障碍物检测是现代机器人技术中的一个重要课题,特别是在室内移动机器人的自主导航方面得到了广泛应用和发展。 本段落由北京理工大学的研究团队提出,并探讨了一种采用线结构光的室内移动机器人障碍物检测系统。该方法利用三维测量技术,通过向地面投射结构光线并用摄像头捕捉被照亮区域来获取图像信息。为了提高图像质量,研究中使用了650纳米滤光片以仅允许结构光线通过。 论文详细介绍了包含四个坐标系的模型:世界坐标系(W)、摄像机坐标系(C)、图像坐标系(I)以及帧存坐标系,用于准确描述环境中的障碍物。同时考虑机器人旋转角和俯仰角的影响,以便更精确地理解和定位障碍物位置。 在实际操作中,系统通过实时处理结构光图象来检测潜在的障碍物。具体而言,当光线遇到障碍时会产生变形现象;通过对这些图像与标准图案进行比对分析,可以判断是否存在障碍及其类型,并获取其特征信息如大小、形状等数据以帮助机器人避开障碍。 该技术具有高精度和实时性的优点,在复杂室内环境中表现良好,能够有效避免碰撞并提高自主导航能力。然而,仍需克服诸如光照变化干扰及算法复杂度提升等问题。 综上所述,这项研究展示了基于线结构光的视觉系统在增强机器人环境感知与智能行为方面的重要潜力,并为促进未来机器人技术进步提供了有价值的参考依据。
  • 计算输送
    优质
    本研究利用计算机视觉技术开发了一种高效的带式输送机偏移检测系统,旨在提高工业生产的安全性和效率。通过实时图像分析,自动识别并纠正输送带的位置偏差,减少停机时间和维护成本。 为解决带式输送机胶带在运行过程中常见的跑偏问题,本段落提出了一种基于计算机视觉的监测方法。首先,在采集到的视频图像中设定感兴趣区域(ROI),以减少计算量,并对这些区域进行预处理。接着,采用改进后的Canny边缘检测算法生成二值化边缘图,然后利用累计概率霍夫变换(PPHT)来提取输送带的直线特征。最后,根据所获得的直线特征判断胶带是否发生跑偏。
  • 水果采摘目标方法.pdf
    优质
    本研究提出了一种用于水果采摘机器人的目标检测算法,利用机器视觉技术精准识别并定位成熟水果的位置,提高采摘效率和准确性。 本段落档探讨了基于机器视觉的水果采摘机器人目标识别方法。通过利用先进的图像处理技术与算法优化,研究旨在提高农业自动化水平,实现高效精准地进行果实定位及分类工作。该系统能够适应不同种类、形状大小各异的果蔬,并在复杂环境下保持稳定性能表现。
  • 导航设计与方案.pdf
    优质
    本文档探讨了基于视觉导航技术的轮式移动机器人设计方案,详细介绍了硬件选型、软件架构及算法实现等关键技术。 基于视觉导航的轮式移动机器人设计方案.pdf 该文档主要探讨了如何设计一种能够通过视觉导航技术自主行动的轮式移动机器人。文中详细介绍了机器人的硬件配置、软件算法以及系统集成等方面的内容,为相关领域的研究者提供了有益参考和借鉴。
  • SLAM闭环及路径规划探讨1
    优质
    本文深入探讨了移动机器人在执行任务时利用视觉SLAM技术进行闭环检测与路径规划的方法,旨在提高其自主导航能力。通过分析当前算法的优势和局限性,提出了优化建议,为未来研究提供参考方向。 随着科技的快速发展,ARVR、机器人及无人驾驶汽车等领域涌现出众多高新技术产品,这些技术的发展离不开一系列复杂的技术支持。视觉SLAM(Simultaneous Localization and Mapping)是其中的核心之一,它涉及到机器人的自主导航与环境理解能力。 本论文主要探讨了视觉SLAM系统中的两个关键问题:闭环检测和路径规划。闭环检测在视觉SLAM中至关重要,用于解决机器人长时间运行时定位估计的漂移问题。通过识别并校正闭环可以消除这种漂移现象,确保轨迹及地图的一致性。传统的基于特征的方法如视觉词袋模型(BoVW)虽然适用于某些场景,但在复杂环境中可能效果不佳且耗时较长。受此启发,本研究提出了一种利用卷积神经网络(CNN)直接提取图像特征的新方法。预训练的CNN模型能够提供更通用的特征表示,在实验中发现POOL5层提供的描述符能实现最佳的效果;通过计算图像间的欧氏距离构建相似性矩阵进行闭环检测。 在自主建图方面,论文提出了一种结合局部和全局快速扩展随机树(RRT)边界检测算法。这种方法可以高效地找到已知区域与未知区域的交界点,有助于机器人建立环境地图。完成地图创建后,采用有偏RRT(Bias-RRT)及动态窗口方法(DWA)相结合的方式进行路径规划,在获取全局导航路线的同时给出局部速度指令,使机器人的移动更加平稳快速。该算法通过ROS工具箱验证,并与A*和迪杰斯特拉算法进行了比较,结果显示提出的路径规划策略具有更平滑的轨迹以及更高的计算效率。 综上所述,本研究在视觉SLAM闭环检测及机器人自主导航方面取得了显著进展:引入深度学习技术提高了特征提取的速度和鲁棒性;提出了一套高效的边界检测与路径规划方法。这些研究成果不仅丰富了SLAM理论体系也为实际应用提供了强有力的技术支持。
  • 钢表面尺寸技术方法
    优质
    本研究提出了一种基于机器视觉技术的高效螺纹钢表面质量检测方法,实现了对螺纹钢尺寸参数的精准测量和缺陷识别。 针对高速螺纹钢表面缺陷检测的技术难题,本段落研究了一种视觉检测方法来测量螺纹钢的表面尺寸。鉴于螺纹钢外形结构复杂的特点,通过对侧面图像进行分析并获取边缘图像后,提出了基于投影重心的亚像素边界定位方法以确定横肋高度和内径尺寸。进一步地,在处理正面图像时通过垂直投影计算出纵肋的高度,并结合轮廓跟踪技术遍历重心来测量横肋与轴线的角度;利用所得角度信息及几何关系推算螺纹钢的横肋间距和顶宽等参数。这些精确获取的结构尺寸为后续进行表面缺陷检测提供了重要的基础数据支持。