Advertisement

无传感器BLDC控制板设计及应用(含原理图、应用说明和程序等)-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目专注于无传感器BLDC控制板的设计与实现,涵盖详细的原理图解析、应用场景介绍以及相关编程代码分享。适合电子爱好者和技术开发者深入学习和实践。 在超高电源电压(高达18V)环境下运行的无传感器BLDC控制技术已被广泛应用于无人机ESC、直流风扇及其他音频设备等领域。此参考设计采用了恩智浦公司的高度集成化8位S08微控制器MC9S08SU8/16,其BLDC控制板凭借紧凑的设计,在低成本下实现了卓越性能。 该方案提供完整的原理图,并可用作评估套件以测试S08SU MCU功能。同时它也是创建个性化无传感器BLDC解决方案的参考设计模板。以下是无传感器BLDC控制板的主要特性: - 紧凑型PCB设计(尺寸:80 x 37毫米) - 支持通过S08/RS08或HCS12 BDM接口进行实时在线调试 - 配备三个P+N MOSFET对,支持单PWM占空比控制 - 使用FreeMASTER调试工具配合开发 - 设有三相比较器以实现零交叉检测功能 - 具有过流与过压保护机制(OCP & OVP) - 支持I2C、SCI及PWT接口 无传感器BLDC控制板适用于多种应用场合,如电机驱动系统等。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • BLDC)-
    优质
    本项目专注于无传感器BLDC控制板的设计与实现,涵盖详细的原理图解析、应用场景介绍以及相关编程代码分享。适合电子爱好者和技术开发者深入学习和实践。 在超高电源电压(高达18V)环境下运行的无传感器BLDC控制技术已被广泛应用于无人机ESC、直流风扇及其他音频设备等领域。此参考设计采用了恩智浦公司的高度集成化8位S08微控制器MC9S08SU8/16,其BLDC控制板凭借紧凑的设计,在低成本下实现了卓越性能。 该方案提供完整的原理图,并可用作评估套件以测试S08SU MCU功能。同时它也是创建个性化无传感器BLDC解决方案的参考设计模板。以下是无传感器BLDC控制板的主要特性: - 紧凑型PCB设计(尺寸:80 x 37毫米) - 支持通过S08/RS08或HCS12 BDM接口进行实时在线调试 - 配备三个P+N MOSFET对,支持单PWM占空比控制 - 使用FreeMASTER调试工具配合开发 - 设有三相比较器以实现零交叉检测功能 - 具有过流与过压保护机制(OCP & OVP) - 支持I2C、SCI及PWT接口 无传感器BLDC控制板适用于多种应用场合,如电机驱动系统等。
  • 2.5A BLDC、PCB、BOM
    优质
    本项目提供一套完整的2.5A BLDC电机控制器设计方案,包含详细原理图、PCB布局文件、物料清单(BOM)以及详尽的设计文档与技术说明。 2.5A BLDC电机控制器概述:该设计是为低功耗、电池供电型无刷直流电机应用而设计的集成式传感器型BLDC电机控制器参考方案。其工作电压范围在8到35V之间,支持从3S至6S的锂聚合物电池电源供应。具体应用场景包括摄像云台、低能耗风扇和机器人等设备。 该控制器集成了MSP430G2353 16位超低功耗微处理器与DRV8313三相半桥驱动器,能够提供高达2.5A的峰值输出电流。MSP430G2353通过霍尔传感器反馈机制控制电机,并利用板载电位器和按钮实现简易的人机交互接口。 系统设计框图展示了其关键特性:工作电压范围为8至35V,支持小型化封装(尺寸仅为2.0英寸 x 1.0英寸),并由MSP430微处理器提供含传感器的BLDC电机控制功能。此外,还整合了限流比较器以及过压、过温和过流保护机制。 电路板截图进一步展示了该控制器的设计细节和布局情况。
  • 直流磁场定向、源码)-
    优质
    本项目详细介绍了一种创新性的直流无刷电机无传感器磁场定向控制系统的设计与实现。包括详细的原理图,代码开源,并提供全面的设计说明文档,旨在帮助读者深入理解其工作原理和应用方法。 直流无刷电机因其高效率、小体积及可靠性,在各种应用领域越来越受欢迎。梯形波控制是常见的选择,因为它操作简单,但换向噪声较大,这在某些特定的应用场景中可能无法满足要求。相比之下,正弦波控制可以实现更低的运行噪音,并且磁场定向控制(FOC)作为其中的一种方法,具有良好的控制系统特性、高转速精度和低噪声等优点。尽管算法复杂度较高通常需要16位或32位微控制器来支持其功能,英飞凌8位微控制器XC836M能够实现这一技术,并且性价比很高。 本段落档将详细介绍直流无刷电机的无传感器磁场定向控制方法以及基于XC836M风机应用的设计参考。内容涵盖硬件和软件说明、开发流程介绍及原理图与代码示例等信息。在该设计中,XC836M主要负责相电流采样、磁场定向控制、位置估算、PWM生成,并通过UART(RS232)接口实现与上位机的通讯功能。 驱动电路采用英飞凌6ED003L06器件,逆变部分则使用了分立IGBT IKD04N60R。整个无传感器磁场定向控制系统包括整流电路、开关电源、微控制器、逆变单元、驱动器和电流采样放大等组件。其中的整流滤波环节以及RS232电平转换都采用了现成模块。 具体功能与指标如下: - 控制方式:无传感器磁场定向控制 - 电机类型:永磁同步电机(用于风机) - 电流采样方法:双桥臂电阻法 - 调速范围:从300RPM到1200RPM(4对极) - 微控制器型号:XC836M - 启动方式:静止启动 - 保护机制:过流、欠压和过载保护 此外,转速控制可以通过上位机软件或外部电压输入实现。开发环境采用Keil C51 V9.03。 硬件电路参数: - 输入供电电压:310V DC - 额定功率:100W
  • Renesas RX65N 工业网络与实现()-
    优质
    本资料深入探讨了瑞萨RX65N微控制器在工业控制网络中的应用设计,包括详细的硬件原理图和实施方案的详细说明。 随着计算机技术、通信技术和控制技术的不断发展,传统的控制领域正在经历一场前所未有的变革,开始向网络化方向发展。为了满足图像、语音信号等大数据量高速传输的需求,以太网与控制网络结合的技术应运而生,并在商业领域得到了广泛应用。 这一工业控制系统网络化的趋势融合了嵌入式技术、多标准工业控制网络互联以及无线技术等多种现代流行技术,从而为工业控制领域的进一步发展提供了广阔的空间和新的发展机遇。大联大世平集团针对此市场推出了一款基于瑞萨电子RX65N微控制器的工业控制器方案。 该方案结合以太网与USB接口,并且具备Android接口,方便扩展其他功能如人机界面(HMI)及传感器信号采集等。此外,其内置多种加密引擎确保了在工业控制网络中的安全防护需求;而Dual Bank Flash结构则简化了固件更新过程。 硬件设计方面,主控芯片采用了瑞萨电子的RX65N微控制器产品系列中的一员。该系列产品基于RXv2内核,并具备大容量RAM和增强的安全性、连接功能以及人机界面(HMI)等功能特点。其基本参数如下: - RXv2 内核工作频率高达120 MHz (34 CoreMark/mA) - 供电电压范围为2.7至3.6伏特 - 提供多种封装类型,包括从64引脚到176引脚的选项 - 配备以太网、USB、CAN和SD主机接口以及四通道SPI等多种通信端口 软件方面,该方案支持高达2MB程序闪存及最大为640KB SRAM容量(DualBank Flash设计简化了固件更新过程)。此外还具备TFT-LCD控制器与2D图形引擎以减少LCD显示时的CPU负载。模拟信号处理单元包括12位ADC和DAC通道,提供丰富的数字-模拟转换功能。 安全特性方面,该方案配备了内存保护机制防止非法访问闪存,并通过TSIP技术确保关键数据不被泄露;同时集成了一系列加密算法如AES、TRNG、TDES、RSA及SHA等以保障信息安全传输与存储需求。此外还具备低功耗高性价比特点,在同类产品中具有价格优势。 在具体硬件模块设计方面,该方案采用Microchip的LAN8720A作为其以太网物理层(PHY)芯片;电源管理则采用了瑞萨电子同步降压DC-DC ISL80019AIRZ转换器。这些核心组件共同构成了一个高效稳定的工业控制网络解决方案。 核心技术优势包括: - 32位RXv2 CPU内核,最高工作频率可达120MHz - 闪存容量高达2MB,并采用Dual Bank结构设计以方便固件更新 - 配备8个加两个额外通道的12位ADC和两路DAC用于模拟信号处理 - 内置TFT-LCD控制器及2D图形引擎支持丰富的人机交互界面开发需求 - 具有完整的以太网MAC功能,兼容RMII接口标准 - 支持USB全速(Full Speed)通信协议并可作为主机或设备使用 方案规格如下: - 处理器:Renesas RXv2架构的微控制器 - 存储容量:高达2MB闪存与640KB SRAM内存空间 - 操作频率:最高120MHz运行速度 - 网络接口:支持RMII标准下实现10/100Mbps以太网传输能力 - USB端口配置:USB-A及Mini-B两种形式,适用于不同应用场景需求 此方案提供Arduino扩展接口,并且开发板尺寸为8cm x 12cm。
  • 【NXP】15W线充发射详解(、BOM)-
    优质
    本资料深入解析NXP 15W无线充电发射器设计方案,涵盖详细原理图、物料清单(BOM)以及实际应用场景说明,为工程师提供全面技术指导。 可能感兴趣的项目设计包括【NXP】15 W无线充电接收器(包含原理图、设计说明等内容)。该设计方案采用恩智浦MWCT1012CFM发射控制器IC,管理并执行实现无线充电发送器解决方案所需的所有控制功能。此方案经过优化,实现了极高的性能效率和有效充电范围,并保持了较低的物料清单(BOM)成本。 符合无线充电协会(WPC)最新的Qi规范标准,可为接收设备提供完整的15 W电源输出功率。设计框图展示了其特性: - 通过WPC-Qi中等功率规范认证 - 传输效率超过75% - 运行功耗低 - 待机功耗低(利用接近传感技术) - 片上数字解调稳定的异物检测算法 - 支持采用12 V输入源的任何15 W单线圈应用 此设计提供了高效的无线充电解决方案,适用于多种应用场景。
  • 红外自动干手解决硬件、源码)-
    优质
    本项目提供一套完整的红外自动感应干手器设计方案,涵盖硬件配置与控制源代码,并附带详细的设计文档。该方案旨在实现高效便捷的自动干手体验。 感应式干手器是一种用于卫生间内快速干燥双手的电器设备,它分为自动感应式的干手器和需要手动操作的干手器两种类型。这种设备在宾馆、餐厅、科研机构、医院及家庭浴室中非常常见。 使用感应式干手器可以避免用毛巾或纸巾擦手可能带来的交叉感染风险。当人们洗手完毕后,只需将双手放在感应式干手器下方的出风口处,机器会自动送出温暖舒适的风来快速干燥双手;一旦用户的手离开感应区,设备就会自动关闭风机。 这种电器的工作机制是通过内置传感器检测到人手接近或移开时发出信号。当传感器接收到“有人靠近”的信号后,它将启动加热和吹风电路的运行以提供暖风吹干湿手功能;而当没有进一步的手部活动(即信号消失)被监测到,则会关闭这些电路并停止工作。 该项目采用的是瑞萨R7F0C809单片机来控制整个系统。通过红外收发传感器识别用户手势动作,进而利用双向可控硅开关技术调控吹风和加热装置的开启与闭合状态。
  • 动牙刷源码-
    优质
    本项目详细介绍了电动牙刷控制板的设计流程,包括原理图和源代码解析。通过优化电路方案,实现高效能且用户友好的电动牙刷控制系统。 电动牙刷控制器采用了德州仪器 (TI) 的低电压 H 桥电机驱动器与集成式 LDO 电压稳压器及超低功耗微控制器(MCU),旨在展示电池供电型电动牙刷的全面实施方案。其特点包括: - 适用于从2V到5.5V范围内的电池电压 - 提供高达5A连续电流和8A峰值驱动电流的能力 - PCB尺寸小巧,仅为43.2 x 14.6mm - 组件数量少,有助于降低成本 - 在关闭状态下电池漏电电流小于50nA 电路框图与实物图展示了电动牙刷控制器的详细设计。
  • 【NXP】15W线充接收)-
    优质
    本资源提供NXP公司15W无线充电接收器的设计文档,包含详细原理图及设计说明,适用于工程师学习与参考。 这款15W无线充电接收器参考设计采用了飞思卡尔MWPR1516接收控制器IC,并支持所有必要的功能来管理和执行无线充电接收解决方案。该设计符合最新的中等功率工作组(MPWG)规范,能够兼容任何Qi认证的发射设备进行充电操作。 此演示板提供5V输出和3A电流,同时可以设置为其他电压输出(最高18V),用户只需要选择合适的外部降压芯片就可以支持双电池或三电池系统。设计中包括了BUCK架构以确保在不同应用需求下的灵活性,并且具备专门的FSK与CNC模型来简化MPWG双向通信开发过程。 该参考解决方案还配备了飞思卡尔嵌入式无线充电软件库,为客户提供更高的设计自由度和产品独特性。同时提供了一个友好的FreeMASTER用户界面促进用户体验交互。此外,它保留了接收器与主应用处理器(AP)的I2C和UART接口能力,并且根据WPC合规测试程序进行了预验证以确保符合标准。 该系统具备12位ADC和PGA,可以进行小型系统的功率损失检测并实现FOD功能;USB/适配器开关则允许有线充电作为优先选择来节省能源。这些特性共同提供了一个高度集成且灵活的平台,帮助客户加速开发过程,并缩短产品上市时间。
  • TP5600移动源的PCB
    优质
    本项目详细介绍了TP5600移动电源的设计理念、功能特点及其实际应用。涵盖原理图设计、PCB布局及完整的电路解决方案,为用户深入了解移动电源技术提供全面指导。 本设计基于TP5600移动电源硬件控制芯片进行开发,并附带原理图、PCB文件等相关资料。TP5600的主要特性包括:支持2A充电及放电;配备4个LED指示电量及其他操作状态;适用于常见的3.6V锂电池(以及多节并联电池)。 在使用过程中,发现了一些需要特别注意的问题: 1. 疑似厂家提供的PCB文件中5V输入的Micro USB接口正负极接反了。开始时按照原样焊接不工作,但TP5600芯片对此有保护措施,并未损坏元件。因此建议电路板制作的朋友一定要验证后再进行打板。 2. 附件中的资料说明:“TP5600.pcb”是厂家提供的PCB文件,即疑似存在输入接口问题的那个;其余部分经过修改或重新设计。“sheet1.sch”是我根据提供的PCB图和数据手册手工绘制的原理图,“PCB1.pcb”则是在“tp5600.pcb”的基础上导入了这个原理图,并手动调整敷铜、走线等,尚未验证其正确性。另外用于智能识别快充功能的几个电阻在设计时未焊接;“usbfoot.lib”是从网上找到的库文件,还未进行验证。 经验分享: 1. 使用TP5600芯片时,请严格遵循手册中的NMOS管选择要求(内阻需为10~30毫欧),否则可能导致充电出错、甚至损坏芯片。 2. 手册中提到可以实现2A的充电电流,但实际使用的是电阻值为0.013Ω的取样电阻时,最大充电电流约为1.8A左右(考虑了线损补偿)。 3. 对于5V 2A输出的需求,在低电量情况下可能难以满足,甚至在电池电量较低的情况下连5V 1A的iPhone都无法正常供电。 4. 芯片引脚排列较为复杂。 对于对充放电电流有较高要求的朋友,建议考虑使用TP5602芯片。
  • 高性能STM32 BLDC直流源码-
    优质
    本设计提供了一种基于STM32微控制器的高性能BLDC电机控制方案,包含详尽的原理图和开源代码。适合于电机驱动应用的研发与创新。 本设计基于STM32 BLDC直流无刷电机控制器,并提供了原理图和源码供网友参考学习。该代码是使用免费开源的CoOS(类似于UCOS)操作系统编写的,因此在学习无刷电机控制的同时也能掌握操作系统的知识。 此外,还提供了一个用Matlab GUI编写并开源的串口接收程序,可以实时接收速度和电流信息以进行PID测试,并且具备CAN接口。用户可以根据需要修改该GUI程序以便进一步了解Matlab编程技巧。 STM32 BLDC直流电机控制器由以下部分组成: 1. STM32F103RB处理器:时钟频率72MHz、Flash存储器64KB以及RAM 20KB; 2. MOSFET SUD35N05-26L,其最大电压为55V且电流可达35A(Rds=0.02); 3. IR2101S MOSFET驱动器; 4. 开发板电源参数:输入范围从10到20伏特,最大输出电流达20安培。 软件资料包括无刷电机转速调节的PID程序(基于免费开源CoOS操作系统),以及作者自己开发的Matlab GUI串口调试工具。该GUI可以用于在电机运行时进行实时PID参数调整和测试,并且已开放源代码供用户参考与改进。