Advertisement

C语言中的哈希表实现(含源码与解析)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:C


简介:
本文章详细介绍了如何在C语言中实现哈希表,并附有完整的源代码和详细的解析说明。适合希望深入理解数据结构原理和技术细节的读者学习参考。 哈希表节点结构 `struct Node`:表示哈希表中的一个节点,包含键、值以及指向下一个节点的指针。 哈希表结构 `struct HashTable`:表示哈希表,包含一个存储节点指针的数组。 创建哈希表函数 `createHashTable`:动态分配哈希表的内存,并初始化哈希表数组为NULL。 哈希函数 `hashCode`:根据键计算哈希值,采用简单的求和取模的方式。 插入键值对函数 `insert`:根据键的哈希值确定存储位置,将新节点插入数组对应位置的链表头部。 查找键值对函数 `get`:根据键的哈希值确定存储位置,遍历链表查找对应的键,找到则返回对应的值,否则返回-1。 删除键值对函数 `removeKey`:根据键的哈希值确定存储位置,遍历链表查找并删除对应的键值对。 销毁哈希表函数 `destroyHashTable`:释放哈希表的内存,包括每个链表的节点和数组本身。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • C
    优质
    本文章详细介绍了如何在C语言中实现哈希表,并附有完整的源代码和详细的解析说明。适合希望深入理解数据结构原理和技术细节的读者学习参考。 哈希表节点结构 `struct Node`:表示哈希表中的一个节点,包含键、值以及指向下一个节点的指针。 哈希表结构 `struct HashTable`:表示哈希表,包含一个存储节点指针的数组。 创建哈希表函数 `createHashTable`:动态分配哈希表的内存,并初始化哈希表数组为NULL。 哈希函数 `hashCode`:根据键计算哈希值,采用简单的求和取模的方式。 插入键值对函数 `insert`:根据键的哈希值确定存储位置,将新节点插入数组对应位置的链表头部。 查找键值对函数 `get`:根据键的哈希值确定存储位置,遍历链表查找对应的键,找到则返回对应的值,否则返回-1。 删除键值对函数 `removeKey`:根据键的哈希值确定存储位置,遍历链表查找并删除对应的键值对。 销毁哈希表函数 `destroyHashTable`:释放哈希表的内存,包括每个链表的节点和数组本身。
  • C
    优质
    本文档探讨了在C语言环境下构建和使用哈希表的方法和技术。它详细介绍了哈希函数的设计、冲突解决策略以及哈希表的基本操作。适合希望深入了解数据结构与算法应用的读者参考学习。 百度的一位技术专家撰写了一篇关于哈希结构的文章。该文章详细介绍了哈希表的原理及其在实际应用中的优势,并探讨了如何优化哈希算法以提高数据处理效率。通过具体的例子,作者深入浅出地解释了冲突解决策略和扩容机制等关键技术点,为读者提供了宝贵的参考信息和技术指导。 (注:原文中没有具体提及联系方式、网址等额外内容,因此重写时未做相应修改)
  • C1
    优质
    本文介绍了在C语言中实现哈希表的基本方法和技巧,包括哈希函数的设计、冲突解决策略以及哈希表的增删改查操作。 哈希表可以通过哈希取余法和链地址法来实现基本操作。
  • C散列Hash例详
    优质
    本文详细介绍了在C语言环境下如何设计和实现散列表(哈希表),并通过具体示例代码解析了其工作原理及应用。 C语言实现散列表(哈希表)实例代码: // 散列查找算法(Hash) #include #include #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define SUCCESS 1 #define UNSUCCESS 0 #define HASHSIZE 7 #define NULLKEY -32768 typedef int Status; typedef struct { int *elem; // 基址 int count; } HashTable;
  • C版本
    优质
    本实验详细介绍了使用C语言实现哈希表的过程,包括哈希函数的设计、冲突解决策略以及数据结构的优化。通过实践加深对哈希算法的理解和应用能力。 以下是代码示例:/* 数据结构C语言版 哈希表 */ #include #include #define NULLKEY 0 // 0为无记录标志 #define N 10 // 数据元素个数 typedef int KeyType; // 设关键字域为整型 typedef struct { KeyType key; int ord; } ElemType; // 数据元素类型 // 开放定址哈希表的存储结构 int hashsize[] = {11, 19, 29, 37}; // 哈希表容量递增表,一个合适的素数序列 int m=0; // 哈希表表长,全局变量
  • C版本
    优质
    本项目为使用C语言编写的哈希表实验实现,包含基本操作如插入、删除和查找等。旨在通过实践加深对数据结构的理解与应用能力。 哈希表是一种高效的数据结构,它通过特定的哈希函数将键(Key)映射到一个固定大小的数组中,从而实现快速的插入、查找和删除操作。在本实验中,哈希表的C语言实现主要涉及以下几个核心知识点: 1. **基本结构**:哈希表由一组数组元素组成,每个元素包含一个关键字域(KeyType key)和一个序号域(int ord)。使用C语言中的结构体定义这个数据元素类型如下: ```c typedef struct{ KeyType key; int ord; } ElemType; ``` 2. **开放定址法**:当发生哈希冲突时,即两个键通过哈希函数映射到同一个位置,本实验采用开放定址法来解决。具体来说,使用线性探测再散列策略处理冲突。 3. **哈希函数**:将键转化为数组索引的哈希函数是实现的关键部分之一。这里采取简单的模运算方法作为示例,即`Hash(KeyType K) = K % m`,其中m代表哈希表长度。 4. **动态数组和内存管理**:由于元素数量可能变化,需要使用动态分配来创建并调整哈希表大小。初始时通过调用`malloc`函数进行内存分配,在不需要时则利用`free`释放资源。当达到容量上限或者遇到内存限制问题时,则会触发重建操作以增加表的尺寸。 5. **查找操作**:查找功能由名为`SearchHash`的函数完成,该函数首先计算键对应的哈希地址,并通过线性探测解决冲突。如果找到匹配项则返回成功标志;否则标记为失败并提供可能插入的新位置信息。 6. **插入操作**:通常情况下,在确定了适当的插入点之后会执行实际的数据添加任务。这一步基于查找过程的结果进行,若发现目标为空,则将新元素放置于此处;如遇满载且冲突次数过多的情况,则考虑重建哈希表以扩展空间。 7. **哈希表重建**:当装载因子(已存储项数/总容量)达到一定阈值或频繁发生碰撞时需要重新构建哈希表。此过程通过执行`RecreateHashTable`函数来完成,该函数创建更大尺寸的新数组,并将原有数据迁移至新结构中。 8. **全局变量与指针**:在C语言环境中使用一个名为`m`的全局变量表示当前哈希表长度。此外,定义了一个包含指向存储区域、元素计数和容量索引等信息的结构体(HashTable)来管理动态变化的数据集。 以上内容概述了实现高效灵活哈希表所需掌握的主要概念和技术细节,在理解这些原理的基础上可以更有效地利用这种数据结构进行编程实践。
  • C算法
    优质
    本文将详细介绍如何在C语言中实现基本的哈希算法,包括哈希表的设计与构建、冲突解决策略及性能优化方法。 哈希算法可以用C语言实现。这段文字无需包含任何联系信息或网站链接。因此,在重新表述的时候,只需保留核心内容:关于如何用C语言编写一个哈希算法的讨论或者教程可以被简化为介绍使用该编程语言来创建和应用这种数据结构的方法和技术。
  • C算法
    优质
    本文章详细介绍了在C语言环境中如何设计和实现高效的哈希算法,包括常见冲突解决策略及性能优化技巧。 在IT领域内,哈希算法是一种将任意长度的数据转换成固定长度输出的工具,在信息安全、数据完整性验证及密码学等方面应用广泛。本项目采用C语言实现三种不同的SHA-2家族成员:SHA-256、SHA-384和SHA-512。 这些函数由美国国家安全局设计,包括不同哈希值大小(如SHA-224, SHA-256等)。其中最常用的是产生一个256位输出的SHA-256。而SHA-384及SHA-512分别生成384和512位的数据摘要。 这些算法的特点是不可逆性,即不能通过哈希值反推出原始数据,并且对输入的小变化会产生显著不同的结果(雪崩效应)。 实现SHA-256的步骤如下: 1. 初始化:设定初始哈希寄存器。 2. 扩展消息:将信息分割成固定大小块并进行扩展操作。 3. 消息调度:通过一系列位运算,把数据转换为适合计算的形式。 4. 循环处理:使用特定轮函数(由F、G、H和I四个基本步骤组成)迭代更新哈希寄存器的状态。 5. 结束:组合最终的哈希值。 对于SHA-384和SHA-512,虽然它们与SHA-256类似但初始向量及循环运算有所不同以适应更长的结果输出。比如,SHA-512使用了更大的64位操作数而SHA-384则是通过截断中间结果来实现的。 在C语言中实施这些算法时需要考虑以下几点: 1. 数据类型:选择适合进行大量位操作的数据结构如`uint32_t`和`uint64_t` 2. 内存管理:正确处理输入数据的内存分配与释放 3. 位运算符使用 4. 循环及迭代编写以确保步骤执行无误。 5. 安全性问题,避免出现缓冲区溢出或整数溢出等风险。 6. 测试用例覆盖各种情况保证算法正确性和稳定性。 该项目的源代码为学习和理解哈希技术提供了实例,并帮助开发者在实际项目中使用这些算法。同时,在应用时应注意版权及许可协议遵守问题,根据具体需求进行优化调整。
  • C开放地址法
    优质
    本文介绍了如何使用C语言实现基于开放地址法的哈希表,包括处理冲突的方法和优化策略。 开放地址法哈希表构建采用纯C语言实现,并利用了泛型的思想进行编写。