Advertisement

基于MP2307的负压DC-DC转换电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本简介提出了一种基于MP2307芯片设计的高效负压直流转换电路方案,适用于多种电子设备中需要产生负电源的应用场景。 基于MP2307的负压DC-DC转换器,输出经过TPS7A3001稳压。测试电路分享给大家。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MP2307DC-DC
    优质
    本简介提出了一种基于MP2307芯片设计的高效负压直流转换电路方案,适用于多种电子设备中需要产生负电源的应用场景。 基于MP2307的负压DC-DC转换器,输出经过TPS7A3001稳压。测试电路分享给大家。
  • 48V到5V(10W) DC-DC器-
    优质
    本设计提供了一种高效的48V至5V直流降压转换解决方案,适用于需要稳定电力供应的电子设备。此电路可输出高达10瓦功率,确保了各种应用中的可靠性能。 一种用途广泛的DC-DC转换器,在5V 2A的输出下稳定可靠,适用于为Arduino、Raspberry Pi或Jetson Nano供电。 硬件组件: 德州仪器LMR16020 × 1个 软件应用程序及在线服务: Easyeda 手动工具和制造机: 烙铁(通用) 在电动汽车中,电池组两端的电压通常远高于控制逻辑板所需的电压。因此需要使用降压转换器来有效降低输入电源至5V等低压电平。 选择德州仪器LMR16020的原因如下: - 输入电压范围:4.3 V 至 60 V - 输出电流可达连续的2 A,适合为多个低功耗设备或单个大功率设备(如Nvidia Jetson Nano)供电。 - 内置高端MOSFET节省PCB空间并提高电路效率。 - 关断模式下超低静态电流40μA和1μA睡眠状态下的极低电流,延长电池寿命。 - 集成过热、过压及短路保护功能。 设计参数: - 输入电压:V_IN 48 V - 输出电压:V_OUT 5.0 V - 最大输出电流:I_OUT 2 A - 开关频率:f_SW 600 KHz 设定LMR16020的输出电压,通过顶部反馈电阻器(RFBT)和底部反馈电阻器(RFBB)组成的分压电路实现。基于V_OUT等于5 V的设计,选择17.8 kΩ作为RFBB值。 计算开关频率所需的RT阻值为41.2kΩ以确保600kHz的工作频率。 电感的选择根据最大电流纹波决定,选用KIND系数设为20%,获得的最小电感LMIN约为17.7 μH。最终选择22.0μH的电感器来得到理想的电流纹波值。 输出电压稳定时,需要一个足够大的电容器(COUT)以管理输出端的电压波动。通过计算得出所需的最小容值为8.33 uF,并根据公式确定了实际应用中的最大和最小参数值。
  • DC/DC流检测设计
    优质
    本设计提出了一种创新的DC/DC转换器电流检测电路方案,旨在提高电力电子设备中的能效和性能。通过优化传感器与控制算法,实现了高精度、低功耗及宽范围的电流监测能力,适用于各种电源管理应用。 我们设计了一个高精度的电流检测电路,采用华润上华CSMC0.5um BiCMOS工艺库,并利用Cadence Spectre软件进行仿真。通过仿真结果得知,所设计的电路能够实现1:1000的电流取样精度,具有很高的采样精度和优秀的性能表现。
  • 流升DC/DC[图]
    优质
    本简介探讨了一种高效的大电流升压电路DC/DC转换器解决方案,并通过图表详细解析了其工作原理和设计要点。适合电子工程专业人士参考学习。 基于美国凌力尔特公司生产的两相步进升压型DC/DC控制器LT3782,设计了一款大电流输出的升压型DC/DC模块。该模块在12V汽车电瓶供电下,可根据需要提供高达7A电流的多种输出电压(如24V和18.5V等)。由于采用两相DC/DC新技术,电源效率达到90%以上。相比于将电源转换为交流220V后再转回所需电压的方法,该模块明显提高了效率,符合当前建设节约型社会的发展方向,并具有更强的实用性。
  • 设计DC/DC开关
    优质
    本项目致力于研发一种创新性的负电压DC/DC开关电源,采用先进的设计理念和技术方案,旨在提高转换效率和稳定性。通过优化电路结构及选择高效半导体器件,实现了宽输入范围、高功率密度与良好的负载瞬态响应特性,适用于各种电子设备的电源管理需求。 随着电子技术的快速发展,现代电子测量装置通常需要负电源来为内部的集成电路芯片与传感器供电。例如集成运算放大器、电压比较器以及霍尔传感器都需要这种类型的电源。负电源的质量直接影响到这些设备运行的表现,甚至可能导致采集的数据出现显著偏差。目前,大多数电子测量装置采用抗干扰能力强且效率高的开关电源作为其负电源解决方案。
  • 单片机控制DC-DC
    优质
    本项目设计并实现了一种基于单片机控制的高效DC-DC转换电路,旨在优化电源管理,提升电子设备性能。通过精确调节输出电压和电流,该电路适用于多种便携式及嵌入式系统中,具有广泛的应用前景。 系统方案设计 1.1 方案设计 本方案采用单片机作为主控器件来设计测控电路。通过监测DC-DC直流转换器的输出电流,并利用键盘输入所需的设定信号,单片机会生成PWM(脉宽调制)信号与LM358比较器形成参考电压,进而构成闭环反馈回路,以此控制LM2596芯片的操作,实现Buck电路中开关器件的适时接通和断开操作,确保DC-DC变换过程的有效执行。升压部分则通过LM2577电路进行稳压处理。 1.2 控制系统设计 控制系统采用LM2577与LM2596来构建升压及降压功能模块。Buck电路配合测控电路使用效果良好,同时成本较低且易于焊接调试。利用单片机构成的测控电路使得我们能够更加便捷地通过键盘控制转换器输出的电压和电流值。
  • 输入DC-DC器设计
    优质
    本项目专注于开发一种高效的降压DC-DC转换器,特别针对高电压输入场景优化,旨在实现稳定、高效的电力转换,适用于多种电子设备。 常见的DC-DC应用通常适用于较低的输入电压(小于30V至40V)。对于更高电压的情况则较为少见。本段落介绍了一种以TL494为控制器的降压变换器,能够处理高达60V的输入电压,并通过适当调整元件规格可应用于更高的电压环境。该电路工作频率为110kHz,效率超过80%,输出电流范围在0至2.2A之间。
  • DC-DCEMI解决
    优质
    本文章探讨了针对DC-DC转换器的电磁干扰(EMI)问题,提供了有效的解决策略和技术方案,旨在帮助工程师优化电源设计。 在DC-DC转换器中的高频大功率开关可能会产生干扰信号。输入电源线上的传导噪声以差模或共模噪声电流的形式出现。主要的低频差模噪声会在基频开关频率及其谐波频率上出现在输入电感中,而高频分量为主的共模噪声则在变压器输入电感器和地之间测量得到。此外,在开关DC-DC转换器的输出端还存在一些噪音和纹波现象。通过恰当设计并实施EMI(电磁干扰)滤波技术,可以将这些噪声降低到可接受的程度之内。
  • DC-DC图解析
    优质
    本资料深入解析了DC-DC转换器的工作原理和设计技巧,并提供了详尽的电路图示例。适合电子工程师和技术爱好者参考学习。 ### DC-DC转换器电路原理图详解 #### 一、DC-DC转换器概述 DC-DC转换器是一种将直流电源电压变换为另一种不同水平的直流电源电压的电子设备,广泛应用在计算机电源、通信设备及汽车电子产品中。其主要功能在于提供稳定的输出电压,以满足各种电路对特定电压的需求。 #### 二、48V至12V DC-DC转换器原理图分析 ##### 1. 工作原理 这种类型的DC-DC转换器基于开关模式电源(SMPS)的工作机制。其核心组件包括脉冲宽度调制控制器IC1,功率晶体管Q1,储能元件如电感L和变压器B3,滤波电容C9以及续流二极管D4等。 ##### 2. 电路结构解析 - **电源输入与启动:** 输入的电力通过二极管D2和电阻R1为IC1提供大约+12V的启动电压。IC1作为整个系统的控制单元,负责生成PWM信号以调节功率晶体管Q1的工作状态。 - **PWM信号产生及放大:** IC1产生的PWM信号经电容C4耦合到变压器B3,并驱动功率开关Q1。此外,变压器B3还起到隔离和提升效率的作用。 - **能量转换与传递:** 当Q1导通时,电流通过电感L并在滤波电容C9中储存能量;当Q1断开时,电感L中的磁场能转化为电压并通过续流二极管D4为负载供电。这一过程实现了连续的能量传输。 - **反馈控制:** 为了保持输出电压的稳定性,由电阻R11、R10和R9组成的分压网络用于检测输出电压,并将其送回IC1的反馈端口(脚12)。通过与内部基准电压进行比较,控制器能够调整PWM信号的比例来维持稳定的输出。 - **保护机制:** 当负载发生短路或过载时,IC1会监测脚13上的电压并控制PWM信号的宽度以使功率开关Q1停止工作,从而防止设备损坏。 ##### 3. 振荡频率计算 振荡电路的时间常数由电容C8和电阻R7决定。在本例中设定为65kHz的振荡频率。通过相关公式可以验证特定组合下的L、C值是否满足预期的频率要求,但具体数值未给出。 #### 五、硬件设计要点 1. **选择合适的PWM控制器:** PWM控制器的选择至关重要,它直接影响转换器的工作效率和稳定性。 2. **功率开关的选择:** 功率晶体管Q1应具有低导通电阻以减少损耗,并且要考虑到最大电流与电压的额定值。 3. **电感设计:** 合适的电感值可以保证能量传输的有效性,需要匹配所需的开关频率并确保足够的电流余量。 4. **滤波电容选择:** 正确选用滤波电容有助于降低输出电压纹波,从而提高电源质量。 5. **散热设计:** 在高功率应用中,良好的冷却方案对于保护电子元件免受过热损坏至关重要。 #### 六、总结 通过对48V至12V DC-DC转换器原理图的深入分析,我们了解了这种类型转换器的基本工作方式及关键组件的功能。这类转换器在工业和现代电子产品中的应用非常广泛,并且正确理解与设计能够帮助工程师构建更高效可靠的电源解决方案。
  • MultisimDC-DC仿真
    优质
    本研究利用Multisim软件对DC-DC升压电路进行仿真分析,旨在验证电路设计的有效性和优化性能参数。通过调整关键元器件,探索其在不同工况下的表现,为实际应用提供理论依据和技术支持。 在许多移动设备中需要将电池电压提升至电路所需的电压值,因此直流对直流的升压电路应用十分广泛,在众多数码产品中都有使用。今天分享一个简单的DC-DC升压电路供参考。 在所有类型的DC-DC升压电路中,其基本原理都是通过高频振荡器产生低频脉冲电压,并经过整流获得所需的直流电压。无论输出的电压是多少,这一核心过程保持不变。 下图展示了一个较为简化的DC-DC升压电路示例,其中关键部件是由三极管和线圈构成的震荡电路。 在该震荡电路中产生的高频振荡电流会在线圈两端产生显著的电脉冲,并在线圈另一端同样生成这样的高频脉冲信号。经过二极管整流后,这些高压电流(高于电池电压)变为单向脉冲形式。 当通过电容时,由于充放电过程中的波动被大大削弱,在限流电阻的作用下使电流变得较为平稳。 尽管已经进行了初步的整流和滤波处理,此时输出的电压仍显著高于实际需要的应用电压。因此,还需使用稳压管将该高压稳定到所需的合适值。 最终经过整个升压流程后的电压会被送到设备所需的工作端口上加以利用。需要注意的是,在这个过程中产生的波动较大,所以不适合用于抗干扰能力较弱的低频场合。