Advertisement

DeepGlobe数据集:一个致力于遥感图像分析的大型公开资源库,主要促进遥感图像分割与语义理解等领域研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:RAR


简介:
DeepGlobe数据集是一个大规模的开放性资源库,专注于推动遥感图像领域的图像分割和语义理解等前沿技术的研究进展。 DeepGlobe数据集可以从官方网站上下载,在此之前可能需要注册账号。下载后的数据集需进行预处理操作,包括读取、图像及标签的预处理。 一、数据集概述 DeepGlobe数据集由高分辨率卫星影像及其标注组成,旨在为科研人员提供支持以开发先进的计算机视觉和遥感技术算法。该数据集涵盖多个子任务如道路分割与建筑物检测等,并针对每个子任务提供了特定的数据集。 二、DeepGlobe Road 数据集 来源:此数据集中包含了来自六个国家的高分辨率卫星影像。 规模:包括训练集、验证集及测试集三部分,总计有20,000张图片。这些图片使用了两种不同的像元尺寸(即0.3米和0.05米)进行处理。 标注信息:每一张图都有详细的道路轮廓线注释,以支持道路分割任务的训练与评估。 三、DeepGlobe 语义分割数据集 特点:该数据集主要提供高分辨率亚米级卫星图像,并特别关注农村地区。由于其多样化的土地覆盖类型和密集的标注信息,对算法提出了较高挑战。 规模:包含1,146幅卫星影像。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DeepGlobe
    优质
    DeepGlobe数据集是一个大规模的开放性资源库,专注于推动遥感图像领域的图像分割和语义理解等前沿技术的研究进展。 DeepGlobe数据集可以从官方网站上下载,在此之前可能需要注册账号。下载后的数据集需进行预处理操作,包括读取、图像及标签的预处理。 一、数据集概述 DeepGlobe数据集由高分辨率卫星影像及其标注组成,旨在为科研人员提供支持以开发先进的计算机视觉和遥感技术算法。该数据集涵盖多个子任务如道路分割与建筑物检测等,并针对每个子任务提供了特定的数据集。 二、DeepGlobe Road 数据集 来源:此数据集中包含了来自六个国家的高分辨率卫星影像。 规模:包括训练集、验证集及测试集三部分,总计有20,000张图片。这些图片使用了两种不同的像元尺寸(即0.3米和0.05米)进行处理。 标注信息:每一张图都有详细的道路轮廓线注释,以支持道路分割任务的训练与评估。 三、DeepGlobe 语义分割数据集 特点:该数据集主要提供高分辨率亚米级卫星图像,并特别关注农村地区。由于其多样化的土地覆盖类型和密集的标注信息,对算法提出了较高挑战。 规模:包含1,146幅卫星影像。
  • Keras-DeepLab-V3-Plus-Master____
    优质
    本项目基于Keras实现DeepLabv3+模型,专为遥感图像语义分割设计。通过深度学习技术对遥感图像进行精确的像素级分类与分割,提升图像理解能力。 DeepLab-v3-plus网络结构可以用于实现语义分割任务,适用于普通影像或遥感影像的处理。
  • 代码
    优质
    本项目提供一套用于处理遥感图像的语义分割代码,旨在精准识别与分类图像中的各类地物要素。通过深度学习技术优化,实现高精度的地表覆盖信息提取。 本段落讨论了基于深度学习的影像语义分割算法的具体实现方法,并涵盖了常用的Unet、SEGNET等模型。这些模型在Keras框架下进行开发和应用。
  • .pdf
    优质
    本文探讨了利用深度学习技术对遥感图像进行语义分割的方法与应用,旨在提升地物分类和识别精度。 遥感图像语义分割是利用计算机视觉和图像处理技术对遥感图像中的每个像素或区域进行自动分类,并将其划分为具有特定地物类型的多个区域(如水体、植被、建筑物等)。这项技术在环境监测、城市规划、农业管理和灾害评估等领域中有着广泛的应用价值。随着深度学习,特别是卷积神经网络的发展,遥感图像语义分割的精度和效率显著提高。 ### 一、基本概念 遥感图像语义分割是一种将每张遥感图片中的像素自动分配到预定义地物类别的技术(例如水体、植被、建筑物等)。这项技术在环境监测、城市规划、农业管理和灾害评估等多个领域具有重要应用价值。随着深度学习,尤其是卷积神经网络的发展,遥感图像语义分割的精度和效率显著提高。 ### 二、关键技术 #### 1. 编码器-解码器结构 编码器-解码器架构是目前最常用的模型之一: - **编码器**:通过一系列卷积操作对输入图像进行降维并提取特征表示,通常伴随着下采样以降低计算复杂度。 - **解码器**:将这些特征映射回原始分辨率生成像素级预测结果。这一步涉及上采样来恢复特征图的尺寸。 这种结构的优点在于能够在保持高精度的同时减少所需的计算资源。 #### 2. 多尺度和特征融合策略 由于遥感图像中的地物信息可能在不同尺度中体现,因此采用多尺度分析的方法非常重要: - **ASPP(Atrous Spatial Pyramid Pooling)**:通过空洞卷积和不同大小的接收域有效捕获多尺度信息。DeepLab系列模型就是利用这种模块来提高分割性能的例子。 - **Pyramid Pooling Module (PSP)**:在多个尺度上执行平均池化,然后将这些结果上采样并拼接在一起以获得更丰富的上下文信息。 #### 3. 关系建模方法 除了特征提取之外,了解特征之间的相互关系也很重要: - **Non-local Networks**:通过计算每个位置的特征与其他所有位置的关系来增强表示。 - **Self-Attention Mechanism**:利用注意力权重确定输入数据中哪些部分更重要,从而实现对关键信息的有效关注。 #### 4. 新兴技术 随着深度学习的发展,一些新的技术和方法也被引入到遥感图像语义分割领域: - **Segment Anything Model (SAM)**:这是一种最新的分割技术,能够精确地划分出图像中的任意区域。这种模型具有很强的灵活性和适应性,在处理复杂图像方面展现出巨大潜力。 #### 5. 基于 SSM 的遥感图像语义分割 一种基于状态空间模型(State Space Model, SSM)的框架被提出用于提高遥感图像语义分割的效果,例如Samba。该框架结合了编码器-解码器架构的优点,并通过特定块来有效提取多级语义信息。 ### 三、应用领域 遥感图像语义分割在环境监测(如森林覆盖和水体污染)、城市规划决策支持(如交通规划)以及农业管理中的作物生长状况评估等方面都展现出了巨大潜力。此外,它还能够帮助快速评估自然灾害后的受损情况。 ### 四、未来发展趋势 随着深度学习技术的进步及计算能力的提升,遥感图像语义分割领域将会出现更多创新性的方法和技术。未来的趋势可能包括但不限于更加高效的模型架构和算法、更大规模的数据集处理以及跨领域的集成应用等方向发展。
  • keras-deeplab-v3-plus-master__深度学习___.zi
    优质
    本项目基于Keras实现DeepLabv3+模型,专注于遥感影像的语义分割任务。通过改进和优化,提高了在复杂场景下的分割精度与效率。 《Keras Deeplab-v3+在遥感图像语义分割中的应用》 Deeplab-v3+是一种基于深度学习的语义分割模型,由谷歌的研究人员开发,在计算机视觉领域特别是遥感图像处理中表现出色。项目“keras-deeplab-v3-plus-master”是该模型的Keras实现版本,专为遥感图像中的语义分割任务设计。 Deeplab-v3+的核心在于改进后的空洞卷积(Atrous Convolution)和多尺度信息融合策略。这种技术使模型能够在不增加计算量的情况下扩大感受野,并能捕捉到更广泛的上下文信息,在处理复杂场景时显得尤为重要。此外,该模型采用了Encoder-Decoder结构,通过上采样和跳跃连接恢复细节信息,解决了语义分割中精细化边界的问题。 遥感图像的语义分割任务是指将每个像素分类为特定类别(如建筑物、道路、水体等),这是遥感数据分析的关键步骤之一。Keras作为Python库提供了一种高效且灵活的方式来构建深度学习模型,使Deeplab-v3+能够轻松应用于遥感图像处理。 项目“keras-deeplab-v3-plus-master”可能包括以下组件: 1. **模型代码**:实现Deeplab-v3+的网络结构和训练过程。 2. **数据预处理脚本**:用于对遥感图像进行裁剪、归一化等操作,以确保其符合Deeplab-v3+的要求。 3. **训练脚本**:包含模型参数设置、优化器选择、损失函数定义等内容的Python代码文件。 4. **评估与可视化工具**:用以分析和展示模型性能的数据处理及结果呈现程序。 5. **预训练模型**:可能提供经过预先训练的Deeplab-v3+版本,可以直接用于预测或微调。 使用此项目时,用户需要准备遥感图像数据集,并根据Deeplab-v3+的要求进行标注。接下来调整训练脚本中的参数(如学习率、批次大小等),然后开始模型训练过程。完成训练后,可以利用该模型对新的遥感图像执行预测任务并生成像素级别的分类结果。 在城市规划、环境监测和灾害评估等领域中,遥感语义分割技术具有广泛的应用前景。例如通过Deeplab-v3+处理卫星影像可迅速准确地获取地面覆盖信息,并为决策者提供科学依据以制定相关政策。 总的来说,“keras-deeplab-v3-plus-master”项目提供了完整的解决方案来执行基于深度学习的遥感图像语义分割任务,结合Keras的强大功能与Deeplab-v3+先进模型设计的优势,在推动相关研究和应用方面具有显著价值。通过深入理解并利用这个平台,开发者能够进一步探索更高级别的遥感数据分析技术,并为该领域的进步做出贡献。
  • Unet-for-remote-sensing-images:
    优质
    Unet-for-remote-sensing-images 是一种基于U型网络架构设计的深度学习模型,专为遥感图像中的精细语义分割任务而优化。此项目旨在提升对大尺度地理数据的理解与分析能力。 Unet-of-remote-sensing-image用于高分辨率遥感卫星的地物识别任务,涵盖15种地物类型,包括各种农作物、工业用地、河流、水源以及建筑物等。该模型采用改进的U型网络结构进行语义分割,并生成各个地物类型的场景分割图像。与官方论文中的Unet结构有所不同的是,在输出通道数量和上采样层后的通道数量方面进行了调整,并在每个卷积层后面添加了BatchNormalization层,这使得识别准确率有所提升。最终经过微调后,15类地物的分割准确率达到82%。 训练数据主要采用Landsat多光谱图像,并根据美国官方提供的标签制作卫星图像的真实标注结果(groundTruth),共收集到超过23000张尺寸为224×224像素的训练图片。
  • U-Net网络_郭子睿1
    优质
    本文由作者郭子睿撰写,主要探讨了在遥感图像处理领域中应用U-Net网络进行语义分割的研究进展和创新方法。通过优化神经网络架构,提高对复杂场景的理解能力,为自然资源监测、城市规划等领域提供技术支撑。 第二章 背景知识 全卷积网络 使用全连接网络进行精准分割 线性结构网络 对称结构网络 第三章 实验设计 数据集选择及处理 图像处理流程设计 网络结构
  • PyTorch地物类(人工智能&技术)
    优质
    本研究利用PyTorch框架,探索高分辨率遥感影像中的语义分割及地物分类方法,结合人工智能算法和遥感技术,提高对复杂场景的理解能力。 高分辨率遥感语义分割(使用PyTorch):虽然目前遥感技术还无法预测未来,但它能够揭示过去与现在的状况,并逐步见证未来的演变。更新预告:将引入膨胀预测、后处理方法以及半监督学习的伪标签策略,并加入tensorboardX进行可视化输出。待完成事项包括总结训练步骤和技巧,分享预训练模型等。
  • 多尺度
    优质
    《多尺度遥感图像分割》是一篇探讨利用不同空间分辨率的遥感数据进行高效、精确图像分析与理解的研究论文。该文提出了一种新颖的方法,通过整合多种尺度的信息来提高目标识别和场景分类的准确性,对于环境监测、城市规划等领域具有重要意义。 基于超像素合并的遥感图像多尺度分割方法首先将图像分割成多个超像素区域,然后根据特定准则进行合并处理。参考文献《A Bilevel Scale-Sets Model for Hierarchical Representation of Large Remote Sensing Images》发表于2016年的TGRS期刊上。
  • 机场区(包含
    优质
    本数据集提供全面的机场区域遥感图像及其对应的高质量语义分割标签,适用于深度学习模型训练与验证。 本数据集包含约800张机场区域的遥感图像,其中大约300张来自武汉大学的AID遥感数据集,其余的则来自于Google地图截图。这些图片中已有约400张完成了语义分割标注。