Advertisement

基于VxBus的设备驱动在嵌入式系统/ARM技术中的开发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究探讨了在嵌入式系统中使用ARM技术进行VxBus设备驱动开发的方法与实践,旨在提高系统的性能和稳定性。 VxBus是风河公司(Wind River)在VxWorks实时操作系统中引入的一种新的设备驱动程序架构,并从6.2版本开始被纳入其中。这种架构的主要目标在于简化设备驱动的开发、管理和维护,提高系统的灵活性与扩展性。 VxBus的关键功能包括: 1. 设备匹配:它允许设备驱动根据硬件特性自动识别和适配。 2. 硬件访问机制:为驱动程序提供了一种标准的方式来访问及操作硬件资源,如I/O端口、内存映射寄存器等。 3. 软件接口:通过VxBus,应用程序和其他系统组件可以透明地与设备交互,无需关注底层驱动细节。 4. 模块化设计:驱动程序可作为独立模块加载和卸载,增强了系统的维护性和升级性。 在总线控制器的支持下,VxBus能够识别出总线上存在的设备,并执行必要的初始化工作。这确保了驱动程序能与硬件正常通信,并简化了驱动集成流程。同时,它还减少了对板级支持包(BSP)和驱动开发专业知识的需求。用户可以通过Workbench工程环境轻松添加或删除驱动。 在VxBus的管理中,硬件设备和相应的软件被明确分开:硬件称为device;驱动程序则被称为driver。当系统检测到一个device时,它会在driver队列里寻找匹配项,并形成instance以供使用。如果找不到合适的driver,则该device会被标记为orphan状态。 例如,在开发TI公司的PCI2040数据采集卡的VxBus驱动过程中,需要在hcfDeviceList数组中定义设备信息,包括名称、单位号、总线ID和资源等详情。对于多核CPU系统而言,可能还需通过sysDeviceFilter函数指定某个核心来初始化特定设备,并且当有hypervisor时需更新配置文件以分配资源。 从硬件角度看,PCI2040作为连接PCI总线与DSP(例如TMS320VC5410)的桥梁,实现了主机和DSP之间的高速数据传输。具体来说,TMS320VC5410通过其MCBSP0接口与模拟数字转换器如TLC2548相连以采集A/D数据,并且这些数据会经由PCI2040传送到主机进行进一步处理。 驱动程序开发主要涉及初始化阶段的工作内容包括设置设备描述符、注册驱动、配置硬件资源以及管理中断等。在这一过程中,根据hcfDeviceList中的信息探测和初始化设备以确保正确的控制与通信机制。 综上所述,在VxWorks中引入的VxBus架构极大地提高了设备驱动开发效率及系统整体性能表现,使得嵌入式开发者可以更专注于应用程序逻辑而非底层硬件细节。对于基于ARM技术的嵌入式系统而言,该架构的应用还进一步增强了系统的灵活性,并降低了维护成本,是现代嵌入式设计中的重要进步之一。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • VxBus/ARM
    优质
    本研究探讨了在嵌入式系统中使用ARM技术进行VxBus设备驱动开发的方法与实践,旨在提高系统的性能和稳定性。 VxBus是风河公司(Wind River)在VxWorks实时操作系统中引入的一种新的设备驱动程序架构,并从6.2版本开始被纳入其中。这种架构的主要目标在于简化设备驱动的开发、管理和维护,提高系统的灵活性与扩展性。 VxBus的关键功能包括: 1. 设备匹配:它允许设备驱动根据硬件特性自动识别和适配。 2. 硬件访问机制:为驱动程序提供了一种标准的方式来访问及操作硬件资源,如I/O端口、内存映射寄存器等。 3. 软件接口:通过VxBus,应用程序和其他系统组件可以透明地与设备交互,无需关注底层驱动细节。 4. 模块化设计:驱动程序可作为独立模块加载和卸载,增强了系统的维护性和升级性。 在总线控制器的支持下,VxBus能够识别出总线上存在的设备,并执行必要的初始化工作。这确保了驱动程序能与硬件正常通信,并简化了驱动集成流程。同时,它还减少了对板级支持包(BSP)和驱动开发专业知识的需求。用户可以通过Workbench工程环境轻松添加或删除驱动。 在VxBus的管理中,硬件设备和相应的软件被明确分开:硬件称为device;驱动程序则被称为driver。当系统检测到一个device时,它会在driver队列里寻找匹配项,并形成instance以供使用。如果找不到合适的driver,则该device会被标记为orphan状态。 例如,在开发TI公司的PCI2040数据采集卡的VxBus驱动过程中,需要在hcfDeviceList数组中定义设备信息,包括名称、单位号、总线ID和资源等详情。对于多核CPU系统而言,可能还需通过sysDeviceFilter函数指定某个核心来初始化特定设备,并且当有hypervisor时需更新配置文件以分配资源。 从硬件角度看,PCI2040作为连接PCI总线与DSP(例如TMS320VC5410)的桥梁,实现了主机和DSP之间的高速数据传输。具体来说,TMS320VC5410通过其MCBSP0接口与模拟数字转换器如TLC2548相连以采集A/D数据,并且这些数据会经由PCI2040传送到主机进行进一步处理。 驱动程序开发主要涉及初始化阶段的工作内容包括设置设备描述符、注册驱动、配置硬件资源以及管理中断等。在这一过程中,根据hcfDeviceList中的信息探测和初始化设备以确保正确的控制与通信机制。 综上所述,在VxWorks中引入的VxBus架构极大地提高了设备驱动开发效率及系统整体性能表现,使得嵌入式开发者可以更专注于应用程序逻辑而非底层硬件细节。对于基于ARM技术的嵌入式系统而言,该架构的应用还进一步增强了系统的灵活性,并降低了维护成本,是现代嵌入式设计中的重要进步之一。
  • ARMuClinuxCAN总线
    优质
    本项目专注于嵌入式系统的CAN总线设备驱动开发,采用uClinux操作系统与ARM架构平台,旨在提升汽车电子、工业控制等领域的通信效率及稳定性。 uClinux操作系统概述 uClinux是Linux 2.0的一个分支版本,专为缺乏MMU(内存管理单元)的微控制器设计,在嵌入式Linux领域得到广泛应用。由于没有MMU的支持,它特别适合于像ARM7TDMI和m68ez328这样的处理器。 除了具备全面的TCP/IP协议栈之外,uClinux还支持多种网络协议,并且在这些方面表现出色。因此可以说,它是为嵌入式系统设计的一个优秀的网络操作系统。 Linux驱动程序设计概述 Linux系统的内核通过设备驱动程序与外部硬件进行交互操作;设备驱动程序是连接软件和物理硬件的重要桥梁,在整个Linux架构中扮演着不可或缺的角色。
  • 使用GNU工具ARMARM
    优质
    本教程介绍如何利用GNU开发工具链,在ARM架构上构建和调试高效的嵌入式软件系统。通过学习,开发者能够掌握从源代码到可执行文件的整个编译过程,并深入了解ARM体系结构的特点与优势,为基于ARM技术的项目打下坚实的基础。 本段落介绍如何利用GNU工具开发基于ARM的嵌入式系统,并详细阐述了使用编译器、连接器及调试工具的具体方法,为从事嵌入式系统开发的专业人士提供了一种低成本的解决方案。 近年来,ARM公司推出的32位RISC处理器因其低能耗、成本效益高以及强大的功能,在移动通信、手持计算和多媒体数字消费等领域逐渐成为主流选择。这些处理器特有的16/32位双指令集使其在市场上占据了超过75%的份额。随着越来越多的企业推出基于ARM内核的处理器产品,许多开发者开始涉足这一领域。在进行开发时,通常需要购置芯片制造商或第三方提供的开发板,并使用相应的工具链。 本段落主要围绕GNU系列软件展开讨论,包括但不限于gcc(编译器)、gdb及其衍生版本如gdbserver等,在此基础上构建适用于ARM架构的嵌入式系统环境。通过这种方式可以有效降低硬件成本并提高工作效率。
  • ARMLCD图像显示/ARM
    优质
    本项目探讨了在嵌入式ARM平台上开发LCD图像显示系统的实现方法和技术细节,旨在优化资源利用和提升用户体验。 0 引言 随着嵌入式技术的迅速发展以及Linux在信息行业的广泛应用,利用嵌入式Linux系统进行图像采集处理已成为可能。实时获取图像数据是实现这些应用的关键环节之一。本段落采用Samsung公司的S3C2410处理器作为硬件平台,并在此基础上,在基于嵌入式Linux系统的平台上设计了一种建立图像视频的方法。 1 系统硬件电路设计 S3C2410芯片内置了ARM公司ARM920T处理器核心的32位微控制器,具有丰富的资源,包括独立的16 kB指令缓存和数据缓存、LCD(液晶显示器)控制器、RAM控制器、NAND闪存控制器以及三路UART接口和四路DMA通道。
  • Linux操作下进行ARMPCI
    优质
    本项目专注于在Linux环境下针对嵌入式系统及ARM架构开展PCI设备驱动程序的研发工作,旨在提升硬件资源管理效率与系统性能。 本段落以PCI9054为例,在Linux操作系统环境下介绍了PCI驱动程序的开发过程,并针对内核版本2.4,详细讲解了静态加载方法。最后通过硬件测试验证了所编写PCI驱动程序的有效性。 在嵌入式系统中,构建有效的PCI设备驱动对于确保系统的稳定性和性能至关重要。作为一款常用的接口桥接芯片,PCI9054简化了对PCI总线协议的开发工作。Linux操作系统以其开放源代码和高度可移植性的特点,在此领域扮演着重要角色。 开发PCI驱动程序需要深入了解Linux内核机制与设备特性。具体步骤如下: 1. **模块加载及初始化**:在Linux系统中,驱动通常以模块形式存在,并通过命令动态或静态加载。对于PCI9054这样的芯片,这一步包括设置其配置空间和分配所需资源。 2. **识别并连接到特定的设备**:内核启动时会自动扫描所有PCI总线上的设备信息。开发者需根据厂商ID与设备ID来匹配目标驱动程序至相应硬件上。 3. **资源配置**:确定了正确的设备后,下一步是为该设备分配资源如IO端口、内存映射区域及中断请求线等,并通过基址寄存器(BAR)进行配置设置。 4. **提供操作接口**:为了使用户空间程序能够与硬件交互,驱动需定义并注册一组标准的文件系统调用函数。这些包括open, close, read和write等功能,从而实现对设备的操作控制。 5. **中断处理机制**:对于支持中断功能的PCI9054等设备而言,还需编写相应的中断服务例程来响应硬件产生的事件,并执行必要的操作如数据传输确认或错误管理。 6. **关闭与释放资源**:当不再需要使用特定设备时,则应由驱动程序负责清理工作。这涉及撤销已分配的所有系统资源并从内核中移除该设备的记录信息等步骤。 在Linux 2.4版本下,PCI驱动通常被编译进核心二进制文件中,并随操作系统启动而自动加载。这种方式简化了管理流程但限制了灵活性和模块化维护的可能性。 最后,在开发完成后需通过实际硬件测试来验证所编写代码的功能与性能表现情况,包括但不限于读写操作、中断响应等关键环节的检查确认工作。 综上所述,掌握PCI驱动程序设计的关键在于熟悉Linux内核架构及设备特性。遵循上述步骤可以帮助开发者创建高效且可靠的PCI设备控制机制,在嵌入式系统中实现无缝运行效果。
  • Web远程监控/ARM
    优质
    本研究聚焦于开发一种基于嵌入式Web技术的远程监控系统,该系统专为嵌入式环境和ARM架构优化设计,提供高效、实时的数据监测与控制功能。 本段落结合机房环境设备的管理需求,分析了远程监控系统的特点,并提出了基于嵌入式Web服务器的设计思路及体系架构方法。文章还简要比较了OPC技术和嵌入式Web服务器在互联方面的应用情况,并通过CGI程序设计着重探讨了嵌入式Web服务器的具体实现方式。 引言部分指出,随着计算机和网络技术的普及,大型单位中的计算机系统数量日益增加,机房已成为这些机构的信息中心。机房内的环境设备(如空调、UPS电源、配电柜及消防设施等)为网络安全运行提供了必要的保障条件。同时,确保这些环境设备自身的稳定运行也成为机房管理的重要组成部分之一。如果机房的环境设备发生故障,则可能直接影响到计算机系统的正常运作,并造成严重后果。
  • CAN总线测温/ARM
    优质
    本项目致力于开发一种基于CAN总线的高效测温系统,专为嵌入式环境和ARM架构优化设计,旨在提升温度监测精度与网络通信效率。 1. 引言 温度是一个重要的物理量,在测量与控制方面具有重要意义。随着现代工农业技术的发展以及人们对生活环境需求的提高,准确检测和有效调控温度变得至关重要:例如,大气及空调房中的温度变化直接影响人们的健康;在大规模集成电路生产线上,环境温度不合适将严重影响产品质量。因此,作者设计了一种基于工业通用CAN总线标准的嵌入式测温系统。该系统能够自动监测被测对象的温度,并通过CAN总线实现远程监控和网络控制。 2. 整体系统设计 根据给定的设计要求,即具备数字显示、键盘输入功能以及温度自动采样能力,本项目旨在开发一种能与工业标准CAN(Controller Area Network)总线相兼容的智能测温装置。
  • DeviceNetI/O模块/ARM
    优质
    本研究探讨了在嵌入式系统中采用ARM技术设计基于DeviceNet协议的I/O模块的方法与实现,旨在提升工业自动化通信效率。 DeviceNet与ModBus协议转换系统由DeviceNet主站、嵌入式IO模块以及ModBus从站三部分组成,实现两者之间的数据交互。该系统的嵌入式IO模块采用ARM7控制器LPC2129来执行DeviceNet和ModBus通信任务,并以软件形式创建了一个仅限组2的DeviceNet从站及一个ModBus主站。其中,DeviceNet从站接收并解码来自DeviceNet主站的数据,经由MCU通过另一UART接口发送给ModBus从站;而该UART接口则用于向ModBus从站发出读写指令。 嵌入式系统是一种集成在设备或系统内部的计算机系统,专门负责特定功能如控制、监控或管理。ARM技术是常用的微处理器架构之一,在低功耗和高性能方面表现优异,广泛应用于嵌入式领域。本段落探讨了基于DeviceNet的嵌入式IO模块设计,这是一种利用ARM技术实现不同通信协议转换的方法。 DeviceNet是一种建立在控制器局域网络(CAN)总线标准之上的工业现场总线系统,主要用于设备间的控制、配置和数据采集等操作。它提供了一种可靠且实时的数据传输方式,并具备简单的布线方案、稳定的通信性能以及抗干扰能力等特点,在工业环境中表现出色。 ModBus协议则是广泛使用的工业通讯协议之一,允许不同制造商的电子控制器之间进行信息交换。该协议定义了通用的语言规则,确保设备能在不同的网络类型中无障碍地互相沟通。ModBus包括对请求和响应消息的具体规定,从而保证各厂家产品的互操作性。 本段落提出的嵌入式IO模块设计旨在解决DeviceNet与ModBus之间的转换问题。鉴于这两种通信标准在结构及层次上的差异,通过此模块进行数据传递显得尤为重要。该方案使用了LPC2129处理器作为核心硬件,它内置有CAN控制器,非常适合执行上述任务。 借助于LPC2129处理器的强大功能,嵌入式IO模块能够同时扮演DeviceNet从站和ModBus主站的角色:接收来自DeviceNet的数据、解码并传递给ModBus设备;以及发送读写指令至后者。经由UART接口传输的DeviceNet数据会被转换成适合于ModBus格式的信息,并返回到原始来源。 实验证明,基于DeviceNet技术设计出的嵌入式IO模块在通信性能方面表现出色,能够有效连接使用这两种不同协议的标准设备,从而实现无缝对接和系统集成。这对于工业自动化系统的扩展与整合至关重要。 总之,该基于DeviceNet的嵌入式IO模块的设计代表了嵌入式技术和工业通讯领域的一项重要创新成果。它通过高效的协议转换机制促进了各种通信标准下的设备协同工作,并提高了整个系统的兼容性和灵活性。此外,这种设计不仅简化了系统集成过程也降低了成本投入,在推动工业自动化技术的发展上发挥了积极作用。
  • 无线通信机器人控制/ARM
    优质
    本项目致力于研发一种基于无线通信技术的嵌入式机器人控制系统,在ARM架构下实现高效能、低功耗和灵活操控,推动了嵌入式系统领域的技术创新。 1 引言 轮式移动机器人是机器人研究领域的重要组成部分,它结合了机械、电子、检测技术和智能控制等多种技术手段,是一个典型的智能控制系统实例。近年来,以高科技、娱乐性和竞技性为特点的智能机器人比赛在全球范围内得到了广泛开展,并逐渐成为一种高技术水平的竞争活动形式。本段落介绍了一种基于ARM7处理器为核心控制器的设计方案,在无线通信技术支持下并移植了嵌入式实时操作系统μC/OS-II构建了一个完整的智能机器人控制系统。 2 硬件设计 根据竞技机器人的功能需求进行总体规划,将各个组成部分模块化处理。其控制系统的硬件结构图如图1所示。系统采用微控制器作为中央处理器来协调和管理外围设备的运行;舵机用于调整机器人的行进方向;驱动电机则选择了带有光电编码器的小型直流电机以实现车轮旋转功能。此外,电磁铁也被集成到机器人设计中。 请注意:以上描述是根据提供的内容进行了简化与重组,并未提及任何联系信息或网址链接等额外细节。