Advertisement

毕业设计涉及智能温室大棚远程监控系统的开发。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
系统架构、软件架构以及实验平台整体设计,均采用pyserial模块来接收来自传感器的反馈数据,同时处理用户提交的信息,并读取传感器所涉及的各项参数。随后,这些数据将被连接至数据库中,并进行相应的记录。前端界面则包含登录页面、注册页面、数据查看页面(或主页面)以及个人中心页面,此外还设有修改密码界面和管理员界面。后端设计同样依赖数据库技术,具体而言,数据库采用了用户信息表(user_info)、岛屿表(island)、节点表(node)和节点数据表(node_data)的结构。为了实现流畅的用户体验,系统实现了ajax前后端的数据交互机制,从而确保前端页面能够实时地呈现管理员创建的内容。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目旨在开发一套智能温室大棚远程监控系统,通过传感器实时采集温室内环境数据,并利用物联网技术实现远程监测与控制,以提高农作物生长效率和减少人力成本。 系统架构设计包括软件架构及实验平台总体设计,使用pyserial接收传感器回传的数据并接受用户输入的信息。此外,还负责读取传感器参数、连接数据库并将数据写入其中。 前端部分主要包括登录页面、注册页面以及用于查看和展示信息的主界面和个人中心页面等。个人中心中还有修改密码的功能选项,而管理员则拥有独立的管理界面进行操作。 在后端设计方面,则是围绕着用户信息(user_info)、岛信息(island)、节点(node)及节点数据(node_data)这四个主要的数据表展开工作的,并通过ajax实现前后端之间的交互。数据库读取到的信息会实时更新并显示于前端页面上,以确保用户体验的流畅性和即时性。 整个系统的设计旨在提供一个高效且易于操作的平台来管理和分析传感器收集来的大量数据。
  • 优质
    温室大棚监控与远程控制系统是一款先进的农业技术应用,它通过集成传感器和智能设备对温室内环境进行实时监测,并支持用户远程调控温度、湿度等关键因素,以优化作物生长条件。 温室大棚监控系统能够远程获取温室内的空气温湿度、土壤温湿度、二氧化碳浓度以及光照强度等实时数据,并在监测参数超出设定范围时自动发出警报。此外,该系统还支持远程或自动化控制卷帘机、喷灌机和电磁阀等设备的运行。
  • .docx
    优质
    本论文探讨了智能温室大棚控制系统的设计与实现,通过集成传感器、自动化灌溉和环境调控技术,提高作物生长效率及资源利用率。 智能温室大棚控制系统设计主要探讨了如何利用现代信息技术实现对温室环境的智能化管理。该系统通过传感器采集温室内温度、湿度、光照强度等多种参数,并根据这些数据自动调节通风、灌溉等设施,从而优化农作物生长条件,提高农业生产效率和产品质量。此外,还介绍了系统的硬件架构与软件模块设计思路以及关键技术的应用情况。
  • 优质
    本项目致力于开发一种智能化的温室大棚控制系统,旨在通过集成温湿度、光照等环境监测技术及自动调控设备,实现对农作物生长环境的有效管理与优化。 本课题采用STC89C52单片机、DS-18B20数字温度传感器、继电器及M4QA045电动机、ULN-2003A集成芯片以及四位八段数码管等元件,设计了温湿度报警电路和电机驱动电路,并实现了电热器的控制。通过这些技术手段,在温室大棚中成功建立了自动化的温度与湿度控制系统,解决了传统人工调控中存在的误差大、耗时且效率低的问题。 该系统具有运行稳定可靠的特点并且成本较低。它能够采集到温室内的温湿度参数并根据数据进行自动化调节,实现了对温室环境的有效控制目标,从而促进了农作物的生长发育,并提高了大棚作物产量和经济效益,带来了显著的社会效益。
  • 优质
    温室大棚监控系统是一种智能化农业管理系统,通过传感器和物联网技术实时监测温室内环境参数,并自动调控以优化作物生长条件。 温室大棚的设计利用温湿度传感器监测内部的温度、湿度及光照等环境条件。一旦这些参数超出所需范围,系统将自动采取相应的调整措施。
  • 基于STM32微制器
    优质
    本项目旨在设计一个基于STM32微控制器的温室大棚智能监控系统,能够实时监测环境参数并自动调控设备,提高农作物生长效率与资源利用率。 温室大棚是我国种植反季节蔬菜的主要手段,在北方尤为重要。随着农业科技的进步,农业设施克服自然环境影响的能力逐渐提高。目前我国的农业温室大棚已经普及推广,但许多仍采用人工监测方式,管理落后且生产效率较低。本段落提出一种基于STM32为核心控制系统的智能温室监控系统,通过自动检测和调控内部环境因子,在无人状态下实现农作物生长环境的智能化管理。 文章首先分析了影响作物在温室中生长的因素:温度、湿度、光照强度以及二氧化碳浓度,并选择西红柿、黄瓜和辣椒三种作物作为试验对象。根据实际需求选择了高度集成型中央处理器、传感器及通信模块,制定了电路设计方案与控制策略。对于不同类型的环境参数数据处理方式也有所不同,确定了采集时应遵循的原则,为软件编程提供了思路。 在控制系统设计中采用了模糊PID算法,并完成了控制器的设计,在Matlab上进行了仿真实验。实验结果显示,相较于传统PID和单纯模糊控制方法,模糊PID控制无论超调量还是稳定时间都有明显优势。此外,该系统还具备简洁友好的用户界面以及数据管理和远程操作功能。
  • 基于单片机.doc
    优质
    本文档探讨了基于单片机技术的智能温室大棚监测系统的设计与实现。通过集成环境传感器、数据处理模块及远程控制系统,该方案能够实时监控并自动调节温室内温度、湿度等关键参数,从而提升农作物生长效率和产品质量。 本段落主要介绍了基于单片机的智能温室大棚监控系统的设计方案。该系统的组成部分包括单片机、温湿度传感器、LCD1602显示模块以及警报装置等关键组件,设计分为硬件与软件两个部分。 在硬件方面,选择了AT89C51 单片机作为核心控制器,此款单片机具备强大的处理能力及丰富的外设资源。同时选用了SHT10 温湿度传感器用于监测温室大棚内的温湿变化情况;LCD1602 显示屏则用来实时展示系统数据和警报信息;此外还设计了报警装置以确保在环境参数超出安全范围时能够及时提醒。 软件方面,系统的代码结构分为初始化与采集模块、数据分析处理单元、显示控制程序以及警报机制四大部分。其中初始化及采样部分负责设备启动并获取相关数值;数据判断环节则对收集到的信息进行评估和调整;LCD1602 显示端口将当前状态呈现于屏幕上供用户查看;而一旦温室大棚内的温湿度超出设定的安全界限,报警模块会立即触发警告信号。 本项目致力于解决以下几项关键问题:如何实现全天候监测温室环境的温度与湿度变化、怎样准确判断其是否处于危险区间以及当条件不达标时应采取何种应对措施来保证作物正常生长。通过上述设计思路和实施步骤,该系统能够有效监控并管理温室内各项指标。 本段落的主要贡献在于提出了一款基于单片机技术构建而成的智能温室大棚管理系统,并具备实时监测、高效预警及灵活调整等显著优势,从而有助于提升农业生产效率与产品质量,减少不利天气因素对作物生长的影响。此外,此方案还能够增强整个设施的整体效益和稳定性,在实际应用中取得了良好的效果。 该系统的设计不仅增强了温室大棚管理的科学性和有效性,而且提升了其整体性能指标和服务水平。
  • 基于STM32湿度(优秀/课
    优质
    本项目为一优秀的毕业/课程设计作品,旨在开发一个基于STM32微控制器的温室大棚温湿度监测系统。该系统能够实时采集并显示环境数据,并提供警报功能以确保作物生长的最佳条件。 Linux驱动库文件已测试通过,可以直接使用。
  • 基于STM32F103C8T6和ESP8266
    优质
    本项目设计并实现了一套基于STM32F103C8T6微控制器与ESP8266模块的温室大棚远程监控系统,能够实时采集温湿度、光照等环境数据并通过网络发送给用户,便于进行智能管理和维护。 本项目包含原理图、程序、APP以及原子云固件,并使用FLASH烧录工具进行操作。系统能够检测环境温湿度并显示结果;同时也能监测土壤湿度及光照强度,将数据呈现出来。此外,还具备二氧化碳浓度的测量和展示功能。 通过ESP8266模块,所有收集的数据会被上传至云端平台以及手机应用程序中供用户查看。当各项指标超出预设的安全范围时,系统会启动蜂鸣器发出警报,并根据需要控制电机系统的运行状态以作出相应调整或采取措施。