Advertisement

5.8GHz ETC系统微带二元天线阵列的设计与仿真

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究设计并仿真了一种应用于5.8GHz ETC系统的微带二元天线阵列,旨在优化车辆不停车收费通信性能。 本段落介绍了几种常用的天线,并简要分析了微带贴片天线的工作原理。设计了一种适用于ETC系统的5.8GHz微带二元贴片天线阵列。通过使用Ansoft HFSS V9.2软件进行仿真和Smith V2.0阻抗匹配,得到了该天线的方向图、输入阻抗以及S参数等性能指标,并且仿真结果较好。这些信息为实际的天线制作与测试提供了有价值的参考依据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 5.8GHz ETC线仿
    优质
    本研究设计并仿真了一种应用于5.8GHz ETC系统的微带二元天线阵列,旨在优化车辆不停车收费通信性能。 本段落介绍了几种常用的天线,并简要分析了微带贴片天线的工作原理。设计了一种适用于ETC系统的5.8GHz微带二元贴片天线阵列。通过使用Ansoft HFSS V9.2软件进行仿真和Smith V2.0阻抗匹配,得到了该天线的方向图、输入阻抗以及S参数等性能指标,并且仿真结果较好。这些信息为实际的天线制作与测试提供了有价值的参考依据。
  • 线圆极化仿
    优质
    本研究聚焦于微带天线阵列的设计与优化,特别关注宽带圆极化特性。通过仿真技术探索并实现了高效能、多用途的应用型天线系统。 自20世纪70年代中期微带天线理论得到显著发展以来,由于其体积小、重量轻、馈电方式灵活多样、成本低廉以及易于与目标共形等优点而备受青睐,在雷达系统、移动通信网络、卫星通讯和全球定位系统(GPS)等领域得到了广泛应用。圆极化作为微带天线技术中的一个重要分支,在各种电子设备中有着广泛的运用,如雷达、导航及卫星系统。 由于其特性,收发天线之间的角度位置具有很高的灵活性,并且能够有效减少信号多路径干扰及其他影响因素。此外,宽带通信因其容量大、保密性强和抗多重径扰能力强等优点成为21世纪通讯技术的发展方向,因此对无线设备的宽频化提出了更高的要求。其中,宽带天线是该领域的重要研究对象。 本段落主要探讨了无线通信中宽带圆极化微带天线的设计、分析与应用技术。在研究过程中采用了理论分析、数值仿真和实验验证等方法,并提出多种具有卓越性能的宽带圆极化微带贴片天线结构,研究成果已发表于本领域的顶级期刊《IEEE Transactions on Antennas and Propagation》及《IET Microwaves, Antennas & Propagation》,充分展示了作者的研究成果。 本段落的主要工作包括: 1. 双馈电宽带圆极化微带贴片天线设计技术研究。在探讨了圆极化天线的一般特性和基本要求后,针对传统微带天线频宽窄的缺点,提出了一种新型宽带馈电网络方案——3dB Wilkinson功分器和移相器组合,并通过L型金属棒进行旋转90度近耦合式双馈电来实现圆极化特性。在此基础上对贴片天线进行了面电流分布及辐射特性的详细研究并提出了改进设计,优化了环形贴片的尺寸。 2. 四馈电宽带圆极化微带贴片天线技术的研究。在原有双馈电结构的基础上增加了一组L型金属棒进行对称式四馈电操作,有效消除了馈电线辐射泄漏及信号耦合问题,并抑制交叉极化现象从而扩展了该类天线的圆极化频宽。 3. 四馈电宽带圆极化缝隙天线设计技术。通过在接地板上开设圆形槽来实现电磁波发射并采用四条微带线路进行馈电,此类结构不仅具备良好的宽带特性还拥有双圆偏振性能。 4. 宽带圆极化微带阵列的设计研究。基于单个宽带圆极化天线的研究成果进一步探究了阵列形式的宽频段天线设计技术,并采用相位旋转式单馈电方式实现了对整个阵列的有效馈电,提高了增益并保证了一定范围内的圆形偏振频率宽度。
  • 4.9GHz CST线仿
    优质
    本研究聚焦于在4.9GHz频段进行CST软件中的微带阵列天线设计与优化仿真,探索其电气性能和应用潜力。 CST3D全波仿真软件采用时域积分算法,功能强大。本教程旨在分享一些CST的操作流程和方法。
  • 线
    优质
    《微带天线阵列设计》一书专注于介绍微带天线的基本原理、性能分析及阵列设计方法,旨在为无线通信和雷达系统中的天线技术应用提供理论支持与实践指导。 这是一篇关于带天线阵列的论文,希望会对读者有所帮助。
  • HFSS仿2.4GHz线
    优质
    本研究利用HFSS软件仿真设计了一种工作于2.4GHz频段的微带天线阵列,详细分析了其电气性能和辐射特性。 HFSS仿真的微带天线阵列 2.4G, HFSS文件。
  • 关于5.8GHz圆极化线研究论文.pdf
    优质
    本文深入研究并设计了工作于5.8GHz频段的微带圆极化天线阵,探讨其在无线通信中的应用潜力及优化方案。 为适应电子不停车收费系统(ETC)技术领域对天线增益和方向性的需求,本段落研究并设计了一款工作频率在5.8GHz的圆极化微带天线阵。
  • HFSS 4.1 线仿实例
    优质
    本实例教程采用HFSS 4.1软件进行微带天线阵列的设计与仿真,详细展示了从建模到分析的全过程,适用于射频工程师及研究人员学习和参考。 hfss4*1微带天线阵列仿真实例
  • 基于HFSS平面线
    优质
    本研究利用HFSS仿真软件设计了一种高性能四元平面微带阵列天线,旨在优化其电气性能和制造工艺。 基于微带阵列天线的空腔模型分析法完成了LS波段4元线极化微带阵列天线的设计。使用HISS仿真软件构建了物理模型,并利用HFSS宏定义优化了尺寸参数。通过数据处理得到了驻波比、反射系数、增益方向图和电场方向图等曲线。仿真结果显示,该4元微带阵列天线的各项性能良好,满足工程需求。
  • 36GHz贴片线
    优质
    本研究聚焦于设计一款工作频率为36GHz的微带贴片天线阵列,旨在提升毫米波通信系统的性能与效率。通过优化单元贴片结构及阵列布局,实现宽带、高增益和优良方向性特性,适用于5G/6G无线通信等前沿科技领域。 ### 36GHz微带贴片天线阵列设计知识点 #### 1. 微带贴片天线阵列概述 - **定义**: 微带贴片天线是一种平面结构的天线类型,通常安装在介质基板上。由于体积小、重量轻和易于集成等特点,在无线通信系统中广泛应用。 - **工作原理**: 这种类型的天线通过在介质基板上的金属贴片来辐射电磁波。当电流从馈电点进入贴片时,会在周围产生电磁场,并向外发射出电磁波。 #### 2. 设计步骤详解 ##### 2.1 材料选择与尺寸确定 - **材料选择**: 使用Rogers RT/Duroid 5880作为介质基板。这种材料具有良好的介电性能和稳定性,适用于高频应用。 - **确定尺寸**: 贴片厚度为0.0178mm,并采用铜材质。通过空腔模型理论与经验公式来决定单个贴片的结构参数。 - **仿真验证**: 使用HFSS软件进行模拟并调整相关参数以达到理想的性能指标。 ##### 2.2 四单元贴片阵列设计 - **阵列结构**: 利用四个元件组成的基本侧馈方式构建天线,简化了设计和生产流程。 - **馈线设计**: 关键在于一级馈线的弯曲部分及二、三级尺寸的设计。依据传输理论与逐级匹配原则优化各段长度。 - **相位考虑**: 对于水平极化天线来说,可以忽略输入信号之间的相位差异,从而简化了设计过程。 - **优化过程**: 通过HFSS软件对结构参数进行扫描和调整以确保最佳性能。 ##### 2.3 十六单元微带贴片天线设计 - **扩展结构**: 在四元件阵列基础上进一步叠加形成十六个单元的大型微带贴片天线。 - **尺寸优化**: 计算并模拟五至九级馈线的具体参数,确保整个系统的最佳性能表现。 - **性能评估**: 仿真显示该天线阵列增益为13.89dB,在电压驻波比小于2时的带宽达到1GHz,相对带宽达2.6%。 #### 3. 关键技术指标 - **增益**: 表示集中能量的能力。设计中的最大值为13.89dB,表明该天线阵列能够有效向特定方向辐射。 - **电压驻波比(VSWR)**: 反映了与传输线路之间的阻抗匹配程度。VSWR小于2表示良好匹配减少了反射损失。 - **带宽**: 表示在多大频率范围内保持稳定性能的能力。此设计的带宽为1GHz,相对带宽达到2.6%,表明天线具备较广泛的工作范围。 #### 4. 技术优势 - **结构简单**: 并联侧馈方式大大简化了制造过程。 - **加工方便**: 所选材料和构造使该设备易于生产并降低了成本。 - **高性能**: 精确的设计与优化确保天线具有优秀的增益、驻波比及带宽性能。 #### 5. 应用领域 - **无线通信系统**: 如第五代移动网络(5G)以及卫星通讯等高频应用场合。 - **雷达技术**: 在探测和跟踪等领域有广泛应用前景。 - **科学研究项目**: 包括天文学观测、大气研究等方面。
  • 77GHZ线应用探讨
    优质
    本论文深入探讨了77GHz微带阵列天线的设计原理及其在现代通信技术中的广泛应用,分析其性能特点和优化方案。 本段落设计了两种77GHz微带阵列天线:一种是等阵元的微带阵列天线,另一种是不等阵元的微带阵列天线。所有设计的微带阵列天线均为16个单元大小。在等阵元的设计中,进一步区分出了道尔夫-切比雪夫分布和指数分布两种不同辐射功率模式的微带阵列天线。