Advertisement

肝脏的医学图像语义分割

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《肝脏的医学图像语义分割》专注于利用先进的计算机视觉技术对肝脏及其病灶在医学影像中的精确识别与区分,旨在提高疾病诊断和治疗规划的准确性和效率。该研究结合深度学习算法优化图像处理流程,为临床提供有力工具支持。 最近在学习医学图像中的肝脏语义分割,并且使用了UNet框架。我在一篇博客里找到了相关的代码和数据集链接,经过几天的调试终于成功运行了。下面分享一下调试过程中遇到的一些问题。 首先,在这篇博客中提供了数据集下载地址,只需要通过百度网盘下载即可。训练集包含400个图像文件及对应的400个标签文件;验证集则包括20个图像和相应的20个标签。 其次,关于代码部分,博主提供的链接里只有数据集而没有具体的代码内容。因此我手动复制了相关代码,并将其分为四个主要组成部分: 1. UNet结构 其他部分内容未列出,具体可以参考原文说明。感谢这位博主的分享与支持。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《肝脏的医学图像语义分割》专注于利用先进的计算机视觉技术对肝脏及其病灶在医学影像中的精确识别与区分,旨在提高疾病诊断和治疗规划的准确性和效率。该研究结合深度学习算法优化图像处理流程,为临床提供有力工具支持。 最近在学习医学图像中的肝脏语义分割,并且使用了UNet框架。我在一篇博客里找到了相关的代码和数据集链接,经过几天的调试终于成功运行了。下面分享一下调试过程中遇到的一些问题。 首先,在这篇博客中提供了数据集下载地址,只需要通过百度网盘下载即可。训练集包含400个图像文件及对应的400个标签文件;验证集则包括20个图像和相应的20个标签。 其次,关于代码部分,博主提供的链接里只有数据集而没有具体的代码内容。因此我手动复制了相关代码,并将其分为四个主要组成部分: 1. UNet结构 其他部分内容未列出,具体可以参考原文说明。感谢这位博主的分享与支持。
  • 深度:在应用
    优质
    本文探讨了深度学习技术在肝脏自动分割领域的最新进展和挑战,并详细介绍了其在医学影像分析中的实际应用。 肝分割项目的目的是通过计算机视觉技术,在患者进行扫描的过程中自动描绘肝脏轮廓。该项目采用了一种基于研究论文提出的方法,并将其应用于对肝脏图像的分割任务中。数据集以NifTi格式提供,包含20个三维医学检查的数据样本,每个样本都包括原始影像及其对应的肝脏区域掩模。 我们使用nibabel库来读取这些关联的图像和蒙版文件。在模型构建方面,训练了一个U-net架构——一种完全卷积网络。这种结构的特点是在传统的收缩路径中添加了上采样操作层而非池化层,从而使得网络能够同时学习到上下文信息(通过契约路径)以及精确定位细节(借助扩展路径)。由于跳过连接的存在,来自较低层次的上下文信息得以传递至更高分辨率层级。因此,整个模型可以输出与输入图像大小一致的结果。
  • 基于U-net.pdf
    优质
    本文探讨了利用U-Net模型进行肝脏图像自动分割的方法,通过改进神经网络架构和训练策略以提高分割精度与效率。 这篇学位论文对机器学习在肝脏Dicom图像分割领域的初学者非常有帮助。它详细介绍了整个流程以及网络的建立过程,非常适合深度学习新手阅读。
  • GA.zip_canny算子_v53基因版_matlab__
    优质
    本项目采用MATLAB实现基于Canny算子的图像边缘检测技术,针对v53基因型肝脏进行精准分割,适用于医学影像分析。 在肝脏图像分割应用中,可以使用遗传算法(GENE)来寻找最优的阈值,并结合Canny算子进行边缘检测。这种方法能够有效地提高肝脏图像的分割精度。
  • 十项全能Task02.zip
    优质
    医学图像心脏分割十项全能Task02.zip包含用于评估和改进自动心脏解剖结构识别算法的心脏影像数据集及标签。此资源专为促进心脏病学研究与临床应用的精确性而设计。 医学分割十项全能中的Task02_Heart(.nii文件)包含19个训练集和10个测试集,标签标记为背景和左心房两类。
  • 】利用区域生长算法MATLAB代码.zip
    优质
    本资源提供了一套基于区域生长算法进行肝脏图像自动分割的MATLAB实现代码。该工具旨在帮助医学研究人员及工程师高效、准确地处理和分析肝脏CT或MRI影像数据,支持用户自定义参数以适应不同质量的图像输入。 本段落涉及智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划及无人机等多个领域的Matlab仿真代码。
  • 肿瘤深度习方法:Liver-Tumor-Segmentation
    优质
    《Liver-Tumor-Segmentation》介绍了一种基于深度学习技术的创新算法,专门用于提高肝脏及其内部肿瘤的自动分割精度。该研究旨在通过改进医学图像处理技术来辅助临床诊断和治疗规划。 在该项目中,使用级联的U-net架构来分割肝脏和肝肿瘤。这是一项正在进行的工作,在此仓库中介绍了基本网络结构。项目使用的数据集来自LITS挑战提供的数据集。要求安装pytorch和opencv库。
  • 基于Mask-R-CNN方法
    优质
    本研究提出了一种基于Mask R-CNN框架的创新算法,专门针对医学图像进行高效的语义分割,以提高临床诊断准确性和效率。 **Mask R-CNN在医学图像语义分割中的应用** Mask R-CNN是深度学习领域一个重要的实例分割模型,在医学图像分析中有广泛应用。该模型由Kaiming He、Ross Girshick、Joseph Redmon和Alan Yuille于2017年提出,它是Faster R-CNN的扩展版本,增加了对每个目标像素级分类的能力,从而能够同时实现目标检测与语义分割。 **一、Mask R-CNN结构** 1. **基于Faster R-CNN**: Faster R-CNN是一个两阶段的目标检测器,通过区域提议网络(Region Proposal Network, RPN)生成候选框,并使用分类和回归确定这些框是否包含目标以及调整它们的位置。Mask R-CNN在此基础上增加了一个分支来预测每个候选框内的像素级掩模。 2. **特征金字塔网络(Feature Pyramid Network, FPN)**: 为了处理不同尺度的目标,Mask R-CNN采用了FPN,它可以提供多层的金字塔特征图,每一层对应不同的空间分辨率,适用于检测各种大小的对象。 3. **实例分割**: Mask R-CNN的关键在于其实例分割功能。它为每个目标生成一个二值掩模来表示具体轮廓。这与语义分割不同,在后者中整张图像被划分为多个类别;而在实例分割中,则是区分同一类别的不同个体。 4. **并行处理**: 在Faster R-CNN的RoI池化层之后,Mask R-CNN添加了一个分支用于生成掩模预测,并且与分类和定位任务同时进行,从而提高了效率。 **二、医学图像语义分割的应用** 在医学图像分析中,语义分割对于理解组织结构、病灶检测及病变分析至关重要。Mask R-CNN的优势在于其可以精确地识别并分割出图像中的每个目标(例如肿瘤、血管和细胞等)。 1. **疾病检测与诊断**: 医学图像实例分割可以帮助医生确定和测量病灶的大小、形状以及位置,如肺部CT图像中的结节或MRI图像中的脑肿瘤。 2. **手术规划与导航**: 对于复杂的神经外科手术而言,准确地识别血管及组织有助于制定安全有效的手术路径。 3. **病理学分析**: 在显微镜下的细胞层面,Mask R-CNN可用于区分癌变和正常细胞,从而辅助病理学家进行疾病诊断。 4. **医疗影像质量评估**: 通过比较分割结果可以评价不同成像设备或参数产生的图像质量差异。 5. **图像配准与融合**: 在多模态分析中,精确的分割能够提高来自不同技术的信息结合准确性。 **三、PyTorch实现** 一个可能用到的是`Pytorch_mask_R-CNN-master`文件,这可能是使用了流行的深度学习框架——PyTorch来构建Mask R-CNN模型。此代码库包含了训练、验证和测试所需的所有组件,包括数据预处理、模型结构定义以及损失函数计算等。 总之,Mask R-CNN在医学图像语义分割领域的应用极大地推动了精准医疗的发展,通过高精度的分割技术为临床诊断提供有力支持。同时使用PyTorch这样的深度学习框架让研究者和开发者能够更便捷地构建训练与部署复杂模型。