Advertisement

基于AD9851的高频高压脉冲生成器的设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本设计采用AD9851芯片,实现了一种能够产生高频高压脉冲信号的装置。该系统结构简洁、性能稳定,适用于多种电子测试场景。 当前脉冲发生器中的脉冲形成器件主要采用火花气隙(spark gap)和高压电子开关(high voltage switch)。然而,使用火花气隙作为脉冲形成器件存在诸多缺点:(1)当电压低于1kV时,机械和电气性能不稳定;因此对于2kV以下的试验电压需要通过分压器来实现。(2)在采用固定调节火花气隙的发生器中,难以再现脉冲群内单个脉冲高达10kHz到100KHz的实际重复频率。随着技术进步特别是高速高压电子开关的应用,将脉冲重复频率提高至5kHz和100kHz成为可能;而使用直接数字合成芯片(DDS)生成的脉冲则能实现更高的单一脉冲频率达到10MHz。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AD9851
    优质
    本设计采用AD9851芯片,实现了一种能够产生高频高压脉冲信号的装置。该系统结构简洁、性能稳定,适用于多种电子测试场景。 当前脉冲发生器中的脉冲形成器件主要采用火花气隙(spark gap)和高压电子开关(high voltage switch)。然而,使用火花气隙作为脉冲形成器件存在诸多缺点:(1)当电压低于1kV时,机械和电气性能不稳定;因此对于2kV以下的试验电压需要通过分压器来实现。(2)在采用固定调节火花气隙的发生器中,难以再现脉冲群内单个脉冲高达10kHz到100KHz的实际重复频率。随着技术进步特别是高速高压电子开关的应用,将脉冲重复频率提高至5kHz和100kHz成为可能;而使用直接数字合成芯片(DDS)生成的脉冲则能实现更高的单一脉冲频率达到10MHz。
  • 可调控延时
    优质
    本项目致力于开发一种能够精确调节延迟时间和输出电压的高压脉冲发生器,适用于医疗、工业及科研领域中的特殊需求。 本段落介绍了一种将数字延时电路与高压脉冲形成电路相结合的高精度高压脉冲发生器的设计方案。该装置用于触发Marx发生器及高压脉冲触发设备,同时也适用于高压雷管起爆系统。设计中以CPU8031作为控制核心,并采用VE4137A型快速氢闸流管来构建高压脉冲形成级,MOSFET则用作驱动元件。该装置具备可调节的延时功能,范围从10ns到99μs之间连续可调,且显示数值;产生的高压脉冲幅度在5kV至30kV范围内变化,前沿小于16ns,脉宽超过300ns,并具有低于10ns的抖动。关键词:高压脉冲、脉冲发生器、快速高压开关管、延时控制
  • FPGA信号
    优质
    本设计探讨了基于FPGA技术的脉冲信号生成器的实现方法,详细介绍了硬件架构和软件算法,展示了高效、灵活的脉冲信号产生能力。 本实验采用FPGA技术,基于Altera Cyclone2 EP2C5T144C8芯片设计了一款简易脉冲信号发生器。该设备能够生成周期在1微秒至10毫秒之间、脉宽范围为0.1微秒到周期减去0.1微秒的脉冲信号,时间分辨率为0.1微秒,并且可以同时输出正弦波信号。 实验中的输出模式包括连续触发和单次手动预置数(可设置从0至9)触发。此外,设备还具备显示周期、脉宽以及触发次数的功能。 通过使用FPGA计数器来实现电路设计简化了整体结构并提高了精度,同时降低了功耗及资源成本。
  • 电路图汇总
    优质
    本资料汇集各类高压脉冲发生器电路设计方案,涵盖不同应用场景与技术要求,为电子工程师和科研人员提供设计参考。 高压脉冲发生器电路图一展示了其主放电回路的等效电路:S表示可控开关;C1代表电容器组电容;R1是高压变压器输入端的损耗电阻,而L1、L2分别对应初次级电感,K为耦合系数。此外,C2是次级分布电容,R2则作为总的工作负载。 在图二中展示的是可触发脉冲发生器电路设计。此电路主要由CD40012输入端四或非门集成电路及其外围元件构成。具体来说,或非门1和或非门2构成了单稳态电路,在接收到触发信号后能够生成一个控制脉冲。而通过调节电位器RPl可以改变振荡频率的不稳态电路则由或非门3、4组成,并且在该控制脉冲的作用下工作,使得在一个给定的时间T内产生的脉冲数量可以在2到30之间调整。 图三中的占空比可调实用脉冲信号发生器中,a1与周围元件共同构成频率产生电路。此部分通过连接三个不同电容来对应三种不同的频率范围,并且使用rpl进行精细调节。而由a3及周边元器件组成的调制信号生成电路同样提供三档选择机制。
  • buck.zip_DC-DC buck变换_matlab电路_直流变_电源
    优质
    本资源提供了基于MATLAB的Buck型DC-DC变换器的设计方案,适用于高频电路与直流变压器应用,并涵盖高频脉冲电源系统。 使用MATLAB对Buck电路进行了仿真,该仿真是简单且直接可用的。Buck电路是一种DC-DC转换器,简而言之是通过震荡电路将直流电压转变为高频电源,然后经过脉冲变压器、整流滤波回路输出所需的直流电压,类似于开关电源。
  • 信号
    优质
    本项目致力于设计一款高效、灵活的脉冲信号生成器,旨在满足各类电子实验与测试的需求。通过优化电路结构和算法,实现对脉冲宽度、频率等参数的精确控制,广泛应用于科研及教学领域。 信号发生器又称作信号源或振荡器,在生产实践和技术领域中有广泛的应用。各种波形曲线都可以用三角函数方程式来描述。能够产生多种波形(如三角波、锯齿波、矩形波及正弦波)的电路被称为信号发生器,其中函数信号发生器在实验和设备检测中具有非常广泛的用途。例如,在通信、广播以及电视系统中,需要射频发射时,这里的射频就是载波,用于传输音频或视频信号;因此就需要能够产生高频振荡的装置。而在工业、农业及生物医学等领域内,则需要各种不同功率大小与频率高低的振荡器。
  • FPGA时序.pdf
    优质
    本文档探讨了在FPGA平台上设计和实现一种高效的时序脉冲生成器的方法,详细描述了设计方案、硬件架构以及性能测试结果。 《基于FPGA的时序脉冲发生器设计》这篇文档详细介绍了如何利用现场可编程门阵列(FPGA)技术来构建一个高效的时序脉冲生成系统。该设计涵盖了从硬件架构选择到软件配置的具体步骤,旨在为电子工程领域的研究人员和工程师提供一种灵活且强大的解决方案,适用于各种需要精确时间控制的应用场景中。
  • 性能宽带射放大
    优质
    本项目致力于研发高性能宽带射频脉冲放大器,旨在提升通信与雷达系统的信号处理能力。通过优化电路设计和材料选择,实现高效率、低噪声及宽频带特性,满足下一代无线通讯标准需求。 大功率宽带射频脉冲功率放大器在现代无线通信系统中的作用至关重要,特别是在电子对抗、雷达及探测等领域,其性能直接影响到系统的有效性和可靠性。设计此类放大器的关键在于实现宽频带与大功率的输出,并确保良好的线性度以减少谐波和杂波干扰。 本段落探讨了一种利用MOS场效应管(MOSFET)设计的大功率宽带射频脉冲功率放大器,其工作频率范围为0.6MHz至10MHz,可提供高达1200W的脉冲功率。选择MOSFET作为核心器件是因为它具有高输入阻抗、良好的频率稳定性及简单的偏置电路特点,在宽频带放大器设计中表现出色。 该放大器采用了AB类推挽式功率放大方式,能够在保持高效的同时实现全周期的功率放大,并确保脉冲调制信号上升沿和下降沿的完整性。其电路设计方案分为三级,每级均采用AB类推挽结构以保证宽带工作性能。第一级与第二级分别使用IRF510和IRF530 MOSFET,它们具有快速开关特性,适合处理脉冲信号;最后一级则选用MOSPRT MRFl57实现大功率输出。 为了拓宽频带并提升输出功率,在设计中采用了传输线宽带匹配技术和反馈电路。在PCB布局方面,则注重对称性和铜膜走线的一致性以减少非线性失真和杂散信号的产生,同时通过精心设计的传输线变压器确保阻抗匹配,并注意输入与输出端连接方式及接地处理。 实际调试过程中使用了包括示波器、频谱分析仪、功率计、大功率同轴衰减器、网络分析仪以及射频信号发生器在内的多种专业设备,以验证放大器稳定工作和性能可靠性。总结而言,这项设计融合了电路理论知识、半导体器件特性及电磁兼容性技术,并成功实现了高效宽频带与高输出功率的目标,对于提升无线通信系统性能具有重要意义,并为未来更高要求的通信技术提供了理论和技术支持。
  • SG3525A与AT89C51直流电源电路.pdf
    优质
    本文档探讨了采用SG3525A芯片和AT89C51微控制器构建高效能直流高压脉冲电源的设计方案,详述其工作原理及应用前景。 该电源电路具有0%~100%的可调范围,并提供16种放电模式选择以适应不同的使用场景。其主要应用在电击武器中,用于产生瞬间高压脉冲,使目标暂时失去行动能力。 2. SG3525A PWM 调制器 SG3525A 是一种广泛使用的PWM控制器,在开关电源设计中扮演关键角色。该芯片能够生成高频的PWM信号,通过控制MOSFET管的开闭状态来调节输出电压和电流。它内部集成了振荡器、比较器、误差放大器等功能模块,以精确地调整脉冲宽度,并实现连续变化的频率与占空比设定。在本设计中,SG3525A 产生的PWM信号用于控制MOSFET管的工作状态,从而生成所需的高压脉冲。 3. AT89C51 单片机 AT89C51 是基于8051内核的微控制器,具有强大的处理能力和丰富的IO端口。在本电源电路中,它作为主控单元负责整个系统的控制逻辑。接收外部输入指令后,该单片机会操作SG3525A 的开启与关闭状态,以调整输出电压和电流。此外,AT89C51 还能处理多种保护功能(如过压、过流防护),确保电源系统稳定运行。 4. 高频变压器隔离升压 高频变压器在电路中负责实现电气隔离及电压提升的作用。通过SG3525A 生成的PWM信号控制MOSFET管,将输入直流电转换为高频交流脉冲,并经过高频变压器进行电压增强处理。由于其工作频率较高,可以减小磁芯体积、降低电源重量和尺寸并提高效率。 5. 整流滤波 经由高频变压器升压后的交流脉冲通过二极管整流成直流脉冲,并利用电容滤除噪声以得到平滑的高压输出。这一过程确保了最终电压稳定且纯净无干扰。 6. 可调频率与占空比 借助AT89C51 的控制功能,用户可设定SG3525A PWM 信号参数来改变脉冲频率和占空比值(范围为:频率从5kHz 至20kHz;占空比则在0%到100%之间)。这使得电源电路能够适应不同的应用场景,并满足各种放电时长模式需求。 7. 安全与保护机制 设计中还包含了安全及防护措施,以防止过电压和过电流对设备或操作人员造成伤害。AT89C51 实时监控输出电压和电流状况,在检测到异常情况后立即切断电源或调整工作状态,确保系统正常运行。 总结: 本方案通过结合SG3525A PWM 调制器与AT89C51 单片机实现了高压脉冲电源的频率、占空比以及放电模式可调性。该电路不仅提升了电击武器的功能表现,还减少了潜在副作用(如电灼伤)。经过精心设计和有效保护机制的应用,保证了系统的可靠性和安全性。这种创新型方案为电击武器领域带来了技术革新,并为其他需要高压脉冲电源的场合提供了参考案例。