Advertisement

脉宽调制DC-DC功率变换电路及其动态特性和控制设计

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了脉宽调制(PWM)在DC-DC功率变换电路中的应用,分析其动态特性,并提出有效的控制系统设计方法,以提升电力转换效率和稳定性。 脉宽调制DC-DC功率变换电路及其动态特性与控制设计的研究。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DC-DC
    优质
    本研究探讨了脉宽调制(PWM)在DC-DC功率变换电路中的应用,分析其动态特性,并提出有效的控制系统设计方法,以提升电力转换效率和稳定性。 脉宽调制DC-DC功率变换电路及其动态特性与控制设计的研究。
  • 全桥DC/DC器的软开关技术(阮新波)
    优质
    本文探讨了应用于脉宽调制全桥DC/DC变换器中的软开关技术,旨在提高效率与性能。作者阮新波深入分析并提出创新解决方案,为电力电子领域提供重要参考。 本书是开关电源领域的经典著作,几乎每位从事电源工作的人士都知晓这本书的价值。然而,目前市面上的书店已经很少有售,这是一本非常优秀的书籍。
  • 移相全桥DC-DC的仿真全桥DC-DC原理(MATLAB)
    优质
    本研究探讨了移相全桥DC-DC控制电路的仿真分析,并深入讲解了全桥DC-DC变换电路的工作原理,利用MATLAB软件进行设计与优化。 移相全桥DC-DC控制电路仿真允许用户自行调整参数,并且可以设置变压器的参数。
  • 双向DC-DC程序
    优质
    《双向DC-DC变换器控制程序设计》一书专注于探讨如何高效地为双向直流转换器编写控制软件。本书深入分析了现代电力电子技术中双向DC-DC变换器的关键特性,并详细讲解了其控制策略与实现方法,是工程师及科研人员不可或缺的参考书籍。 此程序是基于STM32的双向DC-DC代码,高压侧连接48V蓄电池,低压侧连接24V蓄电池。
  • 移相全桥DC-DC仿真全桥DC-DC原理-MATLAB源码.zip
    优质
    本资源包含移相全桥DC-DC控制电路的MATLAB仿真文件和相关理论文档,详细介绍了全桥DC-DC变换电路的工作原理。 移相全桥DC-DC控制电路仿真及全桥dcdc变换电路原理分析,包括matlab源码。
  • DC-DC器.pdf
    优质
    《宽带宽DC-DC变换器》是一篇探讨高效电力转换技术的文章,专注于分析和设计具有高带宽特性的直流到直流(DC-DC)电源变换器,以实现快速响应与稳定输出。 宽增益DC-DC变换器是一种能够在广泛的输入与输出电压范围内提供稳定直流电压的电力转换装置,在电动汽车、微电网及储能系统等多个领域中发挥关键作用。这类设备能够提高能源使用效率,广泛应用于电力电子技术。 双向DC-DC变换器因其能实现能量在升压和降压模式间的灵活流动而备受关注。例如,在电动汽车充电应用中,这种变换器可以支持车辆到电网(V2G)的概念,即当电动车不使用时可将电池中的电返回至电网,有助于调节峰谷电力、平衡负载并降低系统成本。 文中特别提到的双有源桥(Dual Active Bridge, DAB)拓扑结构是双向DC-DC变换器的一种典型应用。在探讨双向DC-DC变换器的各种方案中,CLLC和DAB变换器是最主要的选择之一。DAB采用两个半桥电路通过变压器隔离开来构成,并且可以通过调节两臂之间的相位差实现有效能量转移。 DAB具有固定频率与相移控制的特点,在高效能传递的同时还能进行双向功率调控而无需同步整流驱动,不过在满载运行时难以达到零电压开关(ZVS)状态。此外,在轻负载及宽范围的输入电压下可能失去ZVS功能。文中还提到了单相位控制(Single Phase Control, SPC),即通过调节一个桥臂上晶体管的相移来调整输出,但同样存在在上述条件下无法实现零电压开关的问题。 电动汽车充电器解决方案中提到的一种概念是分阶段双向EV充电器,它结合了多个电力电子模块,例如双向连续模式全桥整流器和有源功率因数校正等。这些方案利用多级变换器拓扑结构,在宽输入交流电范围(85~265VAC)内提供稳定的直流输出。 双有源桥在双向DC-DC变换器中的优势在于其能在高效率下传输能量,并且可以针对不同功率流向采用不同的脉冲宽度调制逻辑,控制简单并易于实现。相比之下,传统的CLLC虽然也能支持宽增益范围的电压转换,但控制系统更为复杂,在满负载时启动困难并且在一定范围内可能无法达到理想的电压调节效果。 未来的研究方向应重点关注如何优化双有源桥变换器在轻载及宽输入电压范围内的零电压开关性能以提高整体效率和可靠性。同时,控制变量与调制策略也是重要的研究领域。 双向DC-DC变换器的应用不仅有助于提升电动汽车充电技术中的能源使用率,还能减少对传统电网的依赖性,在推动可持续能源发展方面具有重要意义。随着技术创新的进步,可以预见未来将会有更多高效、稳定的双向DC-DC变换器解决方案被开发出来并投入使用。
  • 基于DSP的数字PIDDC-DC
    优质
    本项目聚焦于运用DSP技术实现高效的数字PID控制算法,并将其应用于DC-DC变换器的设计中,以优化电源转换效率和稳定性。 本段落首先介绍了基本DC-DC变换器的拓扑结构特点及数学建模方法,并通过Matlab仿真建立了理论基础,为后续基于DSP数字PID控制的DC-DC变换器研究与设计奠定了基础。其次,分析了常规PID控制理论并详细阐述了结合系统函数来设计PID补偿器的过程以及在S域中实现传统PID数字化的方法,并提出了利用DSP技术具体实施数字PID控制器的策略。 接着,本段落以Buck转换器为例,在深入理解数字PID控制理论的基础上完成了基于DSP数字PID控制的Buck变换器的实际电路及控制程序的设计并制造了试验样机。最后进行了详细的实验测试与结果分析,结果显示采用定频PWM技术结合数字PID控制方法能够显著提高开关功率变换器的可靠性和灵活性,并且其输出特性得到了大幅提升:静态误差小、噪声敏感度低、动态响应速度快并且具有优秀的负载瞬态性能。
  • (分享)VICOR 12V/15A 高效 DC/DC器的独方案-
    优质
    本篇文章分享了VICOR 12V/15A高效DC/DC转换器的设计,深入探讨其独特的控制方案和电路结构,为电源技术爱好者提供宝贵参考。 高效率DC/DC转换器控制方案概述:该设计方案采用怀格(Vicor)公司的DC/DC转换器,并结合市场上可购买到的密封铅酸电池充电器集成电路,形成一个简单且功能多样的高效电池充电器。此结构适用于大多数类型的电池充电应用。此外,怀格公司详细讨论了交流输入以及其在12V铅酸电池充电器中的具体应用场景。 独特的DC/DC转换器控制方案截图:(详见附件内容)展示了该设计的具体分析细节。 控制芯片UC3906功能介绍:控制芯片UC3906的输出用于调节外部晶体管的工作状态,使其处于线性区。通过这种方式来调整充电电流和电压。有关此芯片的详细说明及应用实例,请参阅附件中的相关内容。
  • 基于单片机DC-DC
    优质
    本项目设计并实现了一种基于单片机控制的高效DC-DC转换电路,旨在优化电源管理,提升电子设备性能。通过精确调节输出电压和电流,该电路适用于多种便携式及嵌入式系统中,具有广泛的应用前景。 系统方案设计 1.1 方案设计 本方案采用单片机作为主控器件来设计测控电路。通过监测DC-DC直流转换器的输出电流,并利用键盘输入所需的设定信号,单片机会生成PWM(脉宽调制)信号与LM358比较器形成参考电压,进而构成闭环反馈回路,以此控制LM2596芯片的操作,实现Buck电路中开关器件的适时接通和断开操作,确保DC-DC变换过程的有效执行。升压部分则通过LM2577电路进行稳压处理。 1.2 控制系统设计 控制系统采用LM2577与LM2596来构建升压及降压功能模块。Buck电路配合测控电路使用效果良好,同时成本较低且易于焊接调试。利用单片机构成的测控电路使得我们能够更加便捷地通过键盘控制转换器输出的电压和电流值。