Advertisement

基于uArm Swift Pro和OpenMV的视觉抓取系统:Vision-Pick-and-Place

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
Vision-Pick-and-Place是一款结合了uArm Swift Pro机械臂与OpenMV摄像头的视觉抓取系统。该系统能够自动识别并精准拾起目标物品,适用于多种工业和教育场景。 视觉拾取和放置系统使用uArm Swift Pro与OpenMV的硬件准备: 1. 视觉系统的其他部分需要准备好。 2. 软件准备包括Vision.ino文件,这是为MEGA2560设计的Arduino代码;以及color_tracking_test.py文件,这个是基于OpenMV IDE编写的代码。另外,请自行上传uArm固件: - 下载XLoader - 设置参数:Hex file: uArm Firmware.hex, Device: Mega(ATMEGA2560), COM port根据您的系统设置,Baud rate为115200。 - 单击上载以完成安装。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • uArm Swift ProOpenMVVision-Pick-and-Place
    优质
    Vision-Pick-and-Place是一款结合了uArm Swift Pro机械臂与OpenMV摄像头的视觉抓取系统。该系统能够自动识别并精准拾起目标物品,适用于多种工业和教育场景。 视觉拾取和放置系统使用uArm Swift Pro与OpenMV的硬件准备: 1. 视觉系统的其他部分需要准备好。 2. 软件准备包括Vision.ino文件,这是为MEGA2560设计的Arduino代码;以及color_tracking_test.py文件,这个是基于OpenMV IDE编写的代码。另外,请自行上传uArm固件: - 下载XLoader - 设置参数:Hex file: uArm Firmware.hex, Device: Mega(ATMEGA2560), COM port根据您的系统设置,Baud rate为115200。 - 单击上载以完成安装。
  • 机器人相关论文与代码:Vision-Based-Robotic-Grasping
    优质
    本项目汇集了多种基于视觉的机器人抓取技术的相关论文和源代码,旨在为研究者提供一个全面的学习和开发平台。 基于视觉的机器人抓取技术依赖于在相机坐标系中的6D(六自由度)抓手姿态来确定目标对象的基本信息。这个姿态包括3D空间位置以及旋转方向,用于执行精确的物体抓取操作。 根据不同的应用场景和需求,针对6D抓手姿势的估计可以分为两大类:2D平面抓取与全维度(6DoF)抓取。在2D平面抓取中,目标对象被假设为位于一个二维工作平面上,并且从单一方向进行接触;因此,在这种情况下,原本复杂的六维数据简化为了三维信息——即物体的位置坐标和旋转角度。 对于评估如何抓住特定点以及确定最优的握持姿态的方法也已得到研究。在6DoF抓取中,机器人可以自由地从任何角度、位置去拾起目标物;因此,在这种类型的抓取任务里,完整的六维数据是不可或缺的。 根据获取到的数据类型的不同(即完整形状模型或单个视图下的点云),现有技术又进一步被划分为基于局部点云的方法和基于整体形态的方法。前者涉及通过算法预测可能的有效握持方式或者从已有的数据库中寻找合适的抓取方法;后者则侧重于利用6D姿态估计技术和物体的三维重建来实现精确的抓取。 总体而言,当前的研究主要集中在如何提高机器人在各种条件下的抓取效率和成功率上。
  • STM32OpenMV云台追踪小车.zip
    优质
    本项目结合了STM32微控制器与OpenMV摄像头,设计了一款能够自主识别并跟踪目标的智能视觉云台追踪小车。 基于STM32以及OpenMV的视觉云台追踪小车项目包含了利用STM32微控制器与OpenMV摄像头实现目标跟踪功能的设计方案。该项目旨在通过结合这两种技术来创建一个能够自动识别并跟随特定对象的小车系统,适用于机器人竞赛、自动化监控等多种应用场景中。
  • 【计算机:算法及应用】Computer Vision: Algorithms and Application
    优质
    《计算机视觉:算法及应用》一书深入浅出地介绍了计算机视觉的基本原理和实用算法,涵盖图像处理、特征检测、物体识别等多个方面。 Computer Vision Algorithms and Applications是一本关于计算机视觉算法及其应用的书籍或资料。这本书主要探讨了如何利用计算机技术来模拟人类视觉系统,并对图像数据进行处理、分析以及理解,涵盖了从基础理论到实际应用的广泛内容。
  • 机器(robot vision)
    优质
    机器视觉(Robot Vision)是机器人技术中的一个重要分支,它使机器能够通过相机和其他传感器获取图像信息,并进行分析和理解,以实现识别、检测及导航等功能。这项技术广泛应用于自动化生产、医疗诊断等领域,极大提升了工业效率与安全性。 ROS(Robot Operating System)是机器人领域广泛使用的开源操作系统,它为机器人硬件抽象、低级设备控制、任务管理及消息传递提供了标准化的接口与方法。其中,图像识别作为重要应用之一,主要涉及如何让系统理解和解析来自摄像头等视觉传感器的数据。 在ROS中,图像数据通常通过话题(Topic)传输,并使用`image_transport`和`cv_bridge`库将原始格式转换为OpenCV可处理的格式。OpenCV是一个强大的计算机视觉库,支持二维码识别、物体识别等多种任务所需的功能。 Ubuntu Kinetic是ROS的一个版本,发布于2016年,基于Ubuntu 16.04 LTS(Xenial Xerus),提供稳定且功能丰富的环境以支持图像识别应用。 在ROS中实现图像识别首先需要配置相机驱动,并通过`camera_info_manager`来发布相机参数。接下来使用`image_transport`订阅如`camera/image_raw`等话题,将接收到的原始数据转换为OpenCV格式进行处理。利用边缘检测、特征匹配和颜色空间转换等功能可以对图像进行预处理。 对于二维码识别任务,ROS社区提供了包括集成ZBar或ZXing库在内的多个包(例如 `qr_code_detector`),这些工具能够自动地检测并解码二维码信息,并且需要正确配置参数以确保准确的识别结果。 除了简单的二维码识别之外,ROS还支持更复杂的图像处理如物体分类和目标追踪等任务。这通常涉及卷积神经网络(CNN)这类深度学习技术的应用。用户可以使用`roscpp`或`rospy`接口与TensorFlow、Caffe等框架交互,将训练好的模型部署到ROS系统中以实现实时的图像识别。 在实际项目开发过程中,可能还需要考虑性能优化问题(如多线程处理和GPU加速)以及如何应对光照变化、遮挡及噪声等因素对识别效果的影响。通过综合运用硬件接口、计算机视觉技术和机器学习方法,开发者能够构建出强大的机器人视觉系统。
  • STM32OpenMV巡线小车完整工程
    优质
    本项目为一款基于STM32微控制器与OpenMV摄像头模块的智能视觉巡线小车,能够自主识别并跟踪预定路线。集成硬件电路设计、软件算法开发及系统调试等环节,适用于教育科研和爱好者实践。 【效果展示】实现了丝滑、快速且稳定的巡线功能。 【工程具体内容】 1. 使用TB6612控制直流减速电机; 2. 通过编码器进行测速; 3. STM32——定时器(PWM、正交编码、中断)、串口等功能的实现; 4. OpenMV用于图像二值化处理和线性回归分析等任务; 5. PID算法应用于速度环和转向环控制,以及串级使用; 6. 数据解析功能包括通过串口接收并处理数据。 【支持二次开发】 该项目包含由STM32CubeMX生成的Keil工程,在需要添加外设功能时可以利用CubeMX进行配置;提供OpenMV图像处理代码示例供用户自行修改以实现更多识别功能或优化现有代码。此外,还附带一个简单的调试流程指南。 编写此示例的主要目的是为了方便后续二次开发工作:当遇到新的设计需求或者需要制作巡线作品时,只需在此基础上添加相关新功能即可,避免每次都从零开始重新构建项目。
  • 引导机器人分类开发设计.pdf
    优质
    本文介绍了基于视觉引导的机器人抓取分类系统的设计与实现,通过图像处理技术识别并分类不同物体,指导机械臂精准执行抓取任务。 设计基于视觉引导的机器人抓取分类系统涉及多个核心技术和流程。该系统的硬件构成包括六自由度串联工业机器人、SCARA四轴机器人以及3D和2D相机,这些设备共同构成了视觉引导系统的硬件基础。其中,六自由度串联工业机器人负责执行具体的抓取操作,而SCARA四轴机器人则可能用于特定方向的操作;结合使用3D和2D相机使得系统能够进行精确的视觉捕捉。具体来说,3D相机获取深度信息,2D相机提供二维图像数据,两者共同提供了对物体形状、位置及姿态的全面理解。 在软件方面,则采用了基于Halcon视觉处理平台以及Qt软件框架的二次开发工作。Halcon是一个专业的机器视觉软件工具包,它包括了图像预处理、位姿估计和模板匹配等功能;而Qt则是一款跨平台的应用程序开发框架,用于构建图形用户界面及实现后端逻辑控制。这两者的结合使开发者能够快速搭建起自动抓取与分类的软件架构。 在图像预处理环节中,通常需要去除噪声、增强图像质量以及调整对比度等操作来提高后续分析和处理步骤的基础条件。位姿估计技术则通过分析物体特征以估算其空间位置及姿态信息,是实现精准抓取的关键因素之一;模板匹配则是将目标物的形状与预设模型进行比对,从而识别出具体对象。 在实际应用中,系统流程一般如下:首先由相机采集图像数据,并经过图像预处理、位姿估计和模板匹配等步骤,在上位机软件的支持下获得物体三维坐标或中心点位置信息。然后这些信息会被发送给机器人控制系统以指导其执行抓取动作,从而实现对多种堆叠物块的识别及拾起。 实验结果表明,该系统在视觉定位方面的误差范围为0.05至1.22毫米,在摆放角度控制于5度以内时,机器人的分类效率比人工操作提高了约62%。这不仅展示了其能够有效且精准地完成目标物体抓取任务的能力,并且显著提升了整体工作效率和精度水平。 综上所述,设计一个高效的基于视觉引导的机器人抓取系统需要关注以下几点:选择适合硬件平台及相机设备是确保准确度的前提条件;强大的机器视觉软件平台则是处理复杂图像信息的基础工具;同时,在构建软件框架时需考虑其易用性和扩展性以适应不同应用场景需求;最后,实际操作中的测试与优化工作也是保证最终效果的关键环节。总体而言,此类系统设计为流水线自动化及智能制造等领域提供了强有力的技术支持和解决方案。
  • 引导机器人控制探讨
    优质
    本研究深入探讨了基于视觉引导的抓取机器人控制系统的设计与实现,旨在提高机器人的自主识别、定位及抓取能力,推动智能机器人技术的发展。 本段落的研究内容主要从以下几个方面展开: (1)针对常见的多连杆夹抱式与真空吸附式抓取方式的效率低下和灵活性不足等问题,开发了一套新的抓取机器人系统。该机器人的结构由粗调机构和微调节粘附平台两部分组成,并采用“粗-细”两级调控机制来实现末端粘附装置在空间中的运动调整:通过粗调机构使末端快速移动至目标物体附近;利用微调节平台上多个粘附盘形成的包络面与待抓取的曲面物体表面紧密贴合,从而完成对复杂形状物体的有效抓取。 (2)考虑到多级伺服控制和复杂的交互需求,确定使用上下位机结合开放式控制系统以及基于PC平台的视觉系统。硬件方面包括了控制器板卡、伺服电机、压力传感器、操作开关及工业相机等组件;软件设计则在C++平台上完成,涵盖了初始化设置模块、通信协议处理单元、数据解析与分析功能块和安全保障机制,以实现高效的人机交互界面。 (3)为了确保机器人末端的运动轨迹能够精确地反映各个关节的动作变化关系,基于D-H法建立了机器人的数学模型,并探讨了逆向求解的过程。此外还完成了手眼标定及相机校准实验,确定了机械臂末端与摄像设备之间的位置姿态转换矩阵以及摄像头的具体成像规则。 (4)针对外形不规则且材质不同的大曲率表面物体抓取难题,提出了相应的解决方案。
  • 机器智能服务机器人
    优质
    本项目旨在研发一种基于机器视觉技术的智能抓取服务机器人,该机器人能够自主识别并精准抓取不同形状与尺寸的物品,适用于仓储、物流及家庭服务等场景。 机器视觉机器人智能抓取技术能够使机器人通过图像识别来精准地完成物品的拾取操作。这项技术结合了计算机视觉算法与机械臂控制策略,大大提升了工业自动化生产线上的灵活性和效率。
  • Halcon三维无序机器技术
    优质
    本项目研究并实现了一种基于Halcon软件平台的三维无序环境物体识别与定位技术,为机器人无序抓取提供精准视觉支持。 我们拥有一系列核心技术:1)高精度无序抓取技术,具备大视野(1.4米*1.4米),抓取精度正负0.2mm;2)焊缝轨迹引导系统;3)自主研发的双目结构光相机和格雷码技术,并提供基于OpenCV源代码的教学课程;4)自制线激光相机;5)三维高精密测量与检测技术;6)胶条形状三维检测技术。有兴趣学习的朋友可以在评论区留言,我们将尽力帮助大家掌握这些技能。