本资源提供了针对车间调度问题的遗传算法解决方案,并以MATLAB代码形式实现。主要应用于解决Job-Shop调度问题,通过优化算法提高生产效率与灵活性。
车间调度遗传算法的研究
1. 参数初始化:族群数量设定为60个个体;迭代次数设为500次;交叉概率设置为0.8;变异概率设为0.6;代沟比例定为0.9。
2. 群体初始化:采用基于调度优先级的编码方式。例如,对于包含三个零件且每个零件有三个工序的情况,可以进行如下形式的初始编码:“1、3、4、5、6、7、8、9、2”或“2、1、3、4、5、6、7、8、9”。
3. 计算适应度:将个体解码为具体的工序序列,并计算完成时间以评估其适应值。
4. 选择操作:从原族群中,按照轮盘法选取60*0.9(即代沟)=54个个体组成新族群。
5. 交叉过程:在选出的新族群内进行遗传算法中的交叉操作。具体而言,在随机挑选的两个未被选过的个体之间执行2点交叉。例如,“1、2、3、5、6、7、8、4、9”和“2、1、3、5、6、4、9、7、8”,若选择在位置2和位置5进行交叉,则生成的中间状态为:“0, 2, 3, 5, 6, 0, 0, 0”。之后,删除这些占位符并插入未被交换的部分以完成新个体。
6. 变异操作:针对通过交叉得到的新族群中的每个个体执行变异。具体来说,若随机生成的数大于设定的变异概率,则在该个体中选择两个不同的位置,并将这两个位置上的数据进行互换。
7. 代群更新:新的群体包含54个经过交叉和/或变异操作后的个体。同时保留来自原族群适应值较高的6个个体以确保种群多样性,其余30%的个体被新产生的后代所替代。