Advertisement

SG3525逆变电路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供SG3525芯片在逆变电源中的应用电路图,详细展示了其工作原理与设计要点,适用于电源变换和开关电源设计。 SG3525逆变器电路图可以使用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SG3525
    优质
    本资源提供SG3525芯片在逆变电源中的应用电路图,详细展示了其工作原理与设计要点,适用于电源变换和开关电源设计。 SG3525逆变器电路图可以使用。
  • 基于SG3525~
    优质
    本项目介绍了一种以SG3525芯片为核心的逆变器设计,详细探讨了其工作原理、硬件构成及应用前景。 逆变电路是电力电子技术中的一个关键概念,它将直流电(DC)转换为交流电(AC)。本段落深入探讨了一种基于SG3525芯片的逆变电路设计,这是一种广泛应用的脉宽调制(PWM)控制器,并特别适用于逆变应用。 SG3525是一款由日本三菱电机公司生产的高性能PWM控制器,主要用于开关电源和电机驱动等场景。该芯片集成了许多功能,使得设计师能够构建高效、精确的逆变系统。其主要特点包括: 1. **内置振荡器**:SG3525包含一个可编程振荡器,可以根据需要调整工作频率。文中提到的用于生成与电网频率匹配交流信号的50Hz同步波发生器即为此功能。 2. **脉宽调制(PWM)**:该芯片使用锯齿波比较型PWM方式,通过外部电平控制占空比,调节输出电压平均值,并实现对逆变输出电压的精确调控。 3. **保护机制**:SG3525内置了过压、过流等保护电路,在系统出现异常时能及时切断电源以防止损害发生。 4. **死区时间控制**:为避免同一时刻内开关器件同时导通导致短路,芯片提供了死区时间控制功能,确保上下桥臂的开关元件有足够的分离时间。 逆变电路的基本结构通常包括以下部分: 1. **前级滤波器**:输入直流电源需经过电容和电感组成的滤波器以减小纹波并提供稳定的直流电压。 2. **逆变桥**:由四个开关器件(如IGBT或MOSFET)组成,它们按照特定顺序导通与截止,将直流转换为交流。 3. **驱动电路**:用于控制开关元件的开启和关闭。SG3525发出的PWM信号是驱动这些开关的关键。 4. **输出滤波器**:为了得到更纯净的正弦波形,需要通过LC滤波器对输出交流电进行谐波去除。 5. **控制系统**:作为核心控制器,SG3525依据反馈信号调整PWM占空比以实现电压或电流闭环控制。 理解并掌握基于SG3525芯片设计逆变电路的工作原理对于从事电力电子、自动化或者新能源领域的工程师来说至关重要。通过深入学习和实践不仅可以提升理论知识水平,也能增强实际操作技能。
  • SG3525器引脚功能及解析.doc
    优质
    本文档详细解析了SG3525芯片在逆变器中的应用,包括各引脚的功能说明和典型电路图设计,为逆变器的设计与调试提供技术指导。 SG3525引脚功能介绍如下: 1. Inv.input(引脚1):误差放大器反向输入端,在闭环系统中连接反馈信号;在开环系统中,与补偿信号输入端相连可构成跟随器。 2. Noninv.input(引脚2):误差放大器同相输入端。无论是在闭环还是开环模式下都接给定信号。通过该引脚和补偿信号输入端之间接入不同类型的反馈网络可以构建比例、积分或比例积分调节器。 3. Sync(引脚3):振荡器外部同步脉冲信号的输入端,用于实现与外电路同步。 4. OSC.Output(引脚4):振荡器输出端。 5. CT(引脚5):定时电容接入点。 6. RT(引脚6):定时电阻接入点。 7. Discharge(引脚7):放电端,与CT之间连接一个放电电阻以构成回路。 8. Soft-Start(引脚8):软启动电容器的输入端。通常会在此位置接上一只5V的软启动电容。 9. Compensation(引脚9):PWM比较器补偿信号输入点,在此与非反相输入之间连接不同反馈网络可以构建比例、积分或PI调节器。 10. Shutdown(引脚10):外部关断信号端。高电压时控制器的输出被禁止,可用于故障保护。 11-14 输出A和B(分别是引脚11和引脚14),这两路为互补型输出; 接地端位于第十二个引脚。 偏置电源接入点在Vc(引脚13); 另一组互补输出则通过Output B(Pin 14)实现。 最后,SG3525的供电电压范围是8-35V,并且具有以下特点: * 输出稳定的参考电平为精确控制提供了基础。 * 振荡频率调整灵活,在宽广范围内可调(从0.4KHz至400kHz); * 支持外部同步,以实现更精准的时钟管理; * 另外还具有软启动、欠压保护和PWM锁存功能等特性。 逆变器是一种将直流电转换成交流电源的技术设备。其主要构成包括:逆变桥电路(用于电压变换)、控制逻辑以及滤波装置三个部分,可以广泛应用于各种家用电器中如空调、洗衣机等等。
  • TL494
    优质
    本资料提供详细的TL494芯片在逆变器应用中的电路设计图解和参数设置说明,适合电子工程爱好者和技术人员参考学习。 TL494 逆变器应用电路图 TL494 是一种高性能的 PWM 调制器,广泛应用于逆变电源、电机驱动及电力电子等领域。下面是对 TL494 在逆变器中的详细解释与知识点总结: ### TL494 功能介绍 TL494 由德州仪器公司生产,具备高频率调制能力、低输出电压摆幅和高速开关性能等特性,在工业控制、家电及汽车电子等多个领域中被广泛使用。 ### TL494 引脚说明 1. 第 1 脚与第 16 脚:误差放大器 A1 和 A2 的同相输入端。 2. 第 2 脚和第 15 脚:误差放大器 A1 和 A2 的反向输入端。 3. 第 3 脚:误差放大器的输出端。 4. 第 4 脚:死区时间控制端。 5. 第 5 脚与第 6 脚:锯齿波振荡器定时电容和电阻连接点,用于生成 PWM 波形。 6. 第 7 脚:接地端。 7. 第 8 和第 11 脚:两个驱动放大器的 NPN 管集电极开路输出端口。 8. 第 9 和第 10 脚:驱动放大器中NPN管发射极负载电阻连接至地的位置。 9. 第 12 脚:最高瞬间工作电压输入端,用于设定电路的最大操作条件。 10. 第 14 脚:内部基准电压稳压源的输出。 ### TL494 应用电路图 TL494 的应用主要包括以下几个方面: - 锯齿波振荡器部分(第5脚和第6脚)用于生成 PWM 控制信号。 - 误差放大器模块(第1、2、3脚),负责监测输出电压变化并调整PWM信号以保持稳定工作状态。 - 驱动放大器电路(涉及8,9,10及11引脚),直接驱动逆变器的开关器件,控制其开启与关闭动作。 - 内部基准电压生成单元(第14脚)提供稳定的参考电平给误差比较环节。 ### TL494 参数说明 TL494 的主要技术指标如下: - 最高工作瞬时电压:可达 42V; - 输出电流限制为 250mA; - 允许的最大输入差分信号电压是 Vcc + 0.3V; - 测试环境温度应控制在 ≤ 45℃以内; - 设计最大耗散功率不超过1W,结温上限设定为150°C;工作及存储温度范围分别为 0 至70°C 和 -65至+150°C。 ### 标准应用参数 - Vcc(第12脚):推荐使用电压区间在7V到40V之间; - 驱动输出端口的最大电流限制为200mA,驱动电阻 RT 的选择范围通常为 1.8kΩ 至500kΩ; - 定时电容 CT 则建议选取值从 470pF 至1μF; - 设计电路的最高振荡频率应不超过300kHz。 TL494 被设计用于高性能 PWM 控制,在逆变电源、电机驱动以及电力电子设备中表现卓越,具备多种优点如高效率调制能力等。
  • PIC16F73PIC16F73PIC16F73PIC16F73
    优质
    本项目介绍基于PIC16F73单片机设计的逆变器电路,详细阐述了硬件构成与软件编程过程。通过优化设计提高效率和稳定性。 PIC16F73逆变器的C语言程序、PDF文档以及Protel图和仿真资料。
  • 汽车
    优质
    本资源提供详细的汽车逆变电源电路设计方案及原理图,涵盖从输入到输出的各个关键部分。适合电子爱好者与工程师参考学习。 典型的双极逆变电路包括前级推挽逆变和后级全桥逆变两部分。
  • 全桥示意
    优质
    本图展示了全桥逆变电路的工作原理和组成部分,包括四个开关元件、负载和直流电源,适用于电力电子技术领域。 全桥在电路中的表现形式是将整流电路中的四个二极管封装在一起。因此,在使用全桥时需要考虑整流电路和工作电压等因素,并进行全面分析以确保电路正常运行。本段落将以IR2110为基础,介绍常用的全桥逆变电源。
  • 48V3000W器PCB.rar
    优质
    本资源包含48V至3000W逆变器的详细PCB电路图,适用于电力电子、新能源和电动汽车等领域工程师及爱好者的参考与学习。 这是一个PCB工程文件,可以直接用于打样或自行制作。内含:3000W前级电路图;KA7500后级电路图;EG8010_SPWM_V2_2等。
  • 三相原理
    优质
    简介:本内容提供关于三相逆变电路的工作原理、构成元件及应用领域的详细解析,并附有直观的原理图以帮助理解。适合电气工程学习者参考。 开关电源中的三项逆变原理图简单实用,已经亲测可用。
  • TL494 400瓦
    优质
    本资料提供了一套基于TL494芯片设计的高效400瓦逆变器电路设计方案,包含详尽的电路图和关键参数说明。 在当前市场上的双端输出驱动IC产品中,TL494以其最完善的功能和最强的驱动能力脱颖而出。其两路不同时间序列的输出总电流为SG3525的两倍,达到400mA,这使得千瓦级及以上的开关电源、DC/DC变换器以及逆变器几乎无一例外地选择了TL494作为首选器件。 尽管最初设计用于驱动双极型晶体管,但通过外部灌流电路的应用,目前大部分使用MOSFET的设备也广泛采用了这款IC。其内部功能与特点及应用方法如下: TL494是德州仪器(Texas Instruments)生产的一款高性能双端输出驱动集成电路,在电力电子领域广泛应用。它在逆变器、开关电源以及DC/DC变换器等千瓦级以上的设备中,因其强大的性能而成为首选的驱动芯片之一。 这款IC内部包含一个独立的RC定时电路,用于构建锯齿波振荡器,并可通过外部电阻R和电容C设定工作频率(fo=kHz=1.2/R(kΩ)·C(μF))。TL494支持最高300kHz的工作频率,这种灵活性使其能够适应不同的应用需求。 此外,它还集成了一套死区时间控制电路。通过外部电压调整比较器的输出电平来调节两路输出之间的延迟时间(第4脚),从而防止在开关转换过程中出现同时导通的情况,并避免产生过大的电流尖峰。 TL494提供两种类型的驱动脉冲:一种是适用于推挽和半桥式电路的双端时序不同的驱动信号;另一种则是用于单端电路的同相输出。这种灵活性使得它能够适应各种布局需求,从而满足不同应用场景的要求。 在误差处理方面,该IC配备了两组完全相同的误差放大器,并将它们的正向输入引出至外部接口以供用户自由设定基准电压值,这不仅有助于实现精确的电压调节功能,还支持过压和过流保护机制的设计与实施。 输出驱动电流能力是TL494的一大亮点。单端输出可提供高达400mA的峰值电流(足以直接驱动5A峰值负载),而双端模式下则为2×200mA,并可通过增加额外级联来扩展至更大功率的应用,如推挽或桥式电路。 综上所述,在设计千瓦级别的电力电子产品时,TL494凭借其高频率驱动、死区时间控制以及多样化的输出配置和精确的误差调整能力等特性成为不可或缺的关键部件。对于开发人员来说,在构建诸如400瓦逆变器系统的过程中正确理解和利用这些特点至关重要,以确保系统的高效与稳定性。