Advertisement

分段存储管理系统的操作系统课程设计报告.doc

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本课程设计报告针对分段存储管理系统进行深入探讨与实现,详细记录了在操作系统课程中对该主题的研究过程、设计方案及实验结果分析。 1. 建立一个段表,并且段表的长度以及数据可以由用户输入。 2. 设计地址变换机构,这是基本分段存储管理系统的核心部分,主要完成逻辑地址到内存实际地址的转换过程。需要对用户输入的数据进行校验,对于不合法的输入应该予以提示。 3. 将用户提供的逻辑地址经过转换后的结果以友好的界面形式输出,包括物理地址和该物理地址中的数据值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .doc
    优质
    本课程设计报告针对分段存储管理系统进行深入探讨与实现,详细记录了在操作系统课程中对该主题的研究过程、设计方案及实验结果分析。 1. 建立一个段表,并且段表的长度以及数据可以由用户输入。 2. 设计地址变换机构,这是基本分段存储管理系统的核心部分,主要完成逻辑地址到内存实际地址的转换过程。需要对用户输入的数据进行校验,对于不合法的输入应该予以提示。 3. 将用户提供的逻辑地址经过转换后的结果以友好的界面形式输出,包括物理地址和该物理地址中的数据值。
  • 优质
    本报告针对操作系统课程中分页存储管理系统的设计与实现进行详细阐述,包括系统原理、页面置换算法及性能评估。 题目:分页存储管理系统:建立一个基本的分页存储管理系统的模型。(1-2人) 首先分配一片较大的内存空间作为程序运行的可用存储空间;创建应用程序的模型;构建进程的基本数据结构及相应的算法,以实现对存储空间的基础管理。设计用于管理分页的基本数据结构与相关算法。开发存储空间的分配和回收算法,并提供信息转储功能,能够将存储信息存入磁盘或从磁盘读取。
  • ——实现(含源码和).rar
    优质
    本资源包含一个操作系统课程设计项目,旨在实现分段存储管理系统。内容包括详细的设计报告及完整源代码,适合深入学习与研究内存管理技术。 在分段存储管理方式下,作业的内存空间被划分为若干个逻辑上独立的段,每个段可以根据程序需求设置不同的大小。这种方式支持按逻辑关系灵活划分进程,并有助于实现信息共享与保护。 本次课程设计的目标是建立一个基本的分段存储管理系统模型。首先,我们使用数组mem[100]来模拟具有100个内存块的空间,用于为进程分配存储空间。采用位示图的方法初始化这100个内存块时全部设为“未被占用”,即值为零;一旦有进程调入并占据某一块或若干块内存,则这些位置的数值变为一表示已被使用;当相应段从内存中移除后,该区域又变回零。通过变量availableMem来跟踪当前可用的总内存量,初始时其值设为100。 其次,我们定义了进程的基本结构:一个进程可以由多个大小不等的段组成。在设计过程中,用户需手动指定每个进程中包含多少个这样的逻辑片段(即“段”),以及每一项所需的具体内存容量。整个进程中所有段所需的总内存量将被记录在一个变量total中。 关于内存分配与回收机制:当创建一个新的进程时,系统会为其各部分分配相应的内存块;一旦完成这些操作后,那些已被占用的内存位置就标记为已使用状态(即数组中的对应元素值从零变为一),同时更新availableMem以反映剩余可用空间的变化。
  • 页式
    优质
    本项目为操作系统课程设计的一部分,专注于研究和实现段页式存储管理系统。通过理论与实践相结合的方式,深入理解虚拟内存管理和地址转换机制,并进行相关算法的设计与优化。 操作系统课程设计 段页面管理操作系统课程设计 段页面管理操作系统课程设计 段页面管理操作系统课程设计 段页面管理
  • 式虚拟
    优质
    本课程设计围绕段式虚拟存储管理系统展开,旨在通过实践加深学生对现代操作系统内存管理机制的理解与掌握。参与者将设计并实现一个简化版的段页式存储系统,涵盖地址转换、页面置换算法及磁盘模拟等核心功能,提升其在计算机系统领域的理论联系实际能力。 该系统包含两个主要部分:一部分是根据内核代码原则设计的请求分段存储管理系统,由一系列函数组成;另一部分则是演示系统,通过调用请求分段存储管理系统的相关函数来运行,并提供展示界面(可以是GUI或字符界面),以显示系统的运行状态和关键数据结构的内容。 具体实现包括以下步骤: 1. 分配一片较大的内存空间以及一段磁盘空间作为程序的可用存储区域及外存交换区。 2. 建立应用程序模型,其中包括分段结构的设计。 3. 构建进程的基本数据结构及其相应算法。 4. 设计管理存储空间的基础架构。 5. 创建管理段的基本数据结构和相关算法。 6. 开发内存分配与回收的策略算法; 7. 实现虚拟存储器功能,通过缺页中断机制将逻辑地址转换为物理地址。 8. 提供信息转储的功能,支持将存储内容写入磁盘或从磁盘读取。
  • 实验——.doc
    优质
    本实验报告详细记录了在操作系统课程中进行的存储管理相关实验过程及结果分析。通过理论与实践相结合的方式,深入探讨了内存分配、页面置换算法等关键技术,并对实验数据进行了全面总结和反思。文档旨在帮助学生更好地理解和掌握操作系统的存储管理机制。 操作系统实验报告——存储管理 本实验报告的主要目的是为了理解内存分配原理,特别是页式虚拟内存分配方法,并了解 Windows 2000XP 的内存管理机制,掌握页式虚拟存储技术。 一、实验目的 1. 理解内存分配原理,尤其是页式虚拟内存的分配方式。 2. 掌握Windows 2000XP中的内存管理系统及其工作流程。 3. 学习并运用Windows 2000XP中与内存管理相关的API函数。 二、实验环境 使用 Windows 2000 或 XP 系统,并用 VC6.0 开发工具进行程序编写和测试。 三、实验内容 1. 创建一个线程来模拟虚拟存储的各种操作,例如保留空间、提交等。 2. 设计另一个监控线程以实时跟踪系统的虚存活动并在控制台显示相关信息。 3. 在监控系统内存使用情况的同时记录整个存储的占用状态。 四、设计思路和流程框图 1. 程序结构 - 主函数通过 _beginthreadex 函数启动两个工作线程:一个用于模拟,另一个用作监视器。 - 模拟线程会随机执行多种虚存操作并更改内存分配情况。 - 监视器线程则根据活动类型和地址信息来追踪这些变化,并输出详细的日志。 五、源程序 该实验的代码由三个主要部分组成:主函数、模拟器线程以及监视器线程。主函数负责初始化两个工作线程,而其他两部分分别承担着执行虚拟内存操作及监控系统状态的任务。 六、知识点总结 1. 页式虚拟内存分配方法是将物理存储空间分割成大小一致的块(称为页面)以便于高效管理的一种技术。 2. Windows 2000XP 的内存管理系统包括了对虚拟地址和实际硬件资源的有效管理和协调机制。 3. 利用页式的分段策略可以实现更加灵活且高效的程序运行环境。 4. 多线程编程能够使应用程序同时处理多个任务,从而提高效率和响应速度。 5. 同步技术则确保各线程之间不会发生冲突或数据不一致性的问题。 七、结论 通过此次实验的设计与实施过程,我们验证了页式虚拟内存分配方法的有效性,并对 Windows 2000XP 的内核级存储管理有了更深入的理解。
  • .zip
    优质
    本资源为《分页存储管理系统》的操作系统课程设计项目文件,包含代码、文档等资料。适用于学习和实践操作系统内存管理机制。 请求分页存储管理系统是操作系统课程设计的一部分。该系统主要涉及虚拟内存管理技术中的页面置换算法实现、页面分配与回收机制以及缺页中断处理等内容。通过本项目的设计与实现,能够帮助学生深入理解操作系统的内部工作原理,并掌握相关数据结构和算法的应用技巧。
  • 算机实验.doc
    优质
    本实验报告详细探讨了在计算机操作系统中存储管理的相关理论与实践操作。通过一系列设计精良的实验,深入分析并理解了内存分配、页面置换算法等关键概念,并结合实际代码实现了多种存储管理技术,为读者提供了全面而实用的学习资源和参考案例。 本段落是一份关于计算机操作系统存储管理实验的报告,通过模拟请求页式存储管理中的页面置换算法,旨在了解虚拟存储技术的特点,并掌握请求页式的页面置换算法。实验使用个人电脑进行,内容涵盖实验目的、仪器设备及总体设计等部分。
  • ——
    优质
    本课程设计聚焦于操作系统中的存储器管理模块,旨在通过理论学习与实践操作相结合的方式,深入理解分页、分段等内存管理机制及其在现代计算机系统中的应用。 操作系统课程设计:存储器管理操作系统课程设计:存储器管理操作系统课程设计:存储器管理操作系统课程设计:存储器管理 简化后为: 操作系统课程设计——存储器管理
  • 实验-实验.doc
    优质
    这份文档是关于操作系统的存储管理实验报告,详细记录了实验目的、原理、过程及结果分析,旨在加深对操作系统中内存管理机制的理解。 ### 实验内容 在分页式虚拟存储管理的模拟实验中,主要任务包括硬件地址转换、缺页中断处理以及选择页面调度算法来应对缺页中断。 ### 实验目的 为了提高主存利用率,在计算机系统中通常会使用辅助存储器(如磁盘)作为主内存扩展。通过这种方法,多道运行作业的逻辑地址空间总和可以超过实际物理内存的空间限制。这种技术实现的增强版主存储器称为虚拟存储器。本实验旨在帮助学生理解如何在分页式管理机制中实施虚拟存储。 ### 实验题目 本次实验包含三个题目的练习,其中第一题为必做任务;第二、第三题可任选其一完成: **第一题:模拟分页系统中的地址转换和缺页中断** 提示: 1. 在作业副本存于磁盘的情况下,当作业被调度时先将起始几页装入内存,并启动执行。为此,在建立作业的页面表时需要记录哪些页已处于主存中以及哪些未加载至主存。 2. 作业运行过程中,指令中的逻辑地址指明了操作数所在的页号和单元号(页内地址)。硬件通过查询该页对应的标志来决定是否进行物理内存访问。如果标志为1,则表示此页面已经位于主存;若为0则需处理缺页中断。 3. 在磁盘上的存放位置信息以及已装入的页面列表与作业指令序列一同提供,用于测试程序设计。 ### 实验代码 ```cpp #include #define length 128 using namespace std; void main() { int xulie[12][2]={{0,70},{1,50},{2,15},{3,21},{0,56},{6,40}, {4,53},{5,23},{1,37},{2,78},{4,1},{6,84}}; int yebiao[7][4]={{0,1,5,11},{1,1,8,12},{2,1,9,13}, {3,1,1,21},{4,0,0,22},{5,0,0,23},{6,0}}; int address=0; for(int i=0;i<12;i++) for(int j=0;j<7;j++) if(yebiao[j][0]==xulie[i][0]) { cout<<指令序号=<