Advertisement

RLCO-Papers:结合组合学习的强化学习文献汇编

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
RLCO-Papers是一份整合了强化学习领域中涉及组合优化问题研究论文的文献集合,旨在促进该领域的知识共享与创新。 RLCO论文基于强化学习的组合优化( RLCO )是一个非常有趣的研究领域。 组合优化问题包括:旅行商问题( TSP ),单源最短路径( SSP ),最小生成树( MST ),车辆路径问题( VRP ),定向运动问题,背包问题,最大独立集( MIS ),最大切割( MC ),最小顶点覆盖( MVC ),整数线性规划( ILP )和图着色问题( GCP )。这些问题大多数是NP-hard或NP-complete。 组合问题通常可以通过精确方法、启发式方法如遗传算法、模拟退火等来解决。近年来,出现了一些基于学习的更优求解器。这是RLCO的研究与应用论文集。 论文按时间和类别分类,并包含一些相关的监督学习文献作为参考。这些参考资料仅用于研究目的分享和交流。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • RLCO-Papers
    优质
    RLCO-Papers是一份整合了强化学习领域中涉及组合优化问题研究论文的文献集合,旨在促进该领域的知识共享与创新。 RLCO论文基于强化学习的组合优化( RLCO )是一个非常有趣的研究领域。 组合优化问题包括:旅行商问题( TSP ),单源最短路径( SSP ),最小生成树( MST ),车辆路径问题( VRP ),定向运动问题,背包问题,最大独立集( MIS ),最大切割( MC ),最小顶点覆盖( MVC ),整数线性规划( ILP )和图着色问题( GCP )。这些问题大多数是NP-hard或NP-complete。 组合问题通常可以通过精确方法、启发式方法如遗传算法、模拟退火等来解决。近年来,出现了一些基于学习的更优求解器。这是RLCO的研究与应用论文集。 论文按时间和类别分类,并包含一些相关的监督学习文献作为参考。这些参考资料仅用于研究目的分享和交流。
  • MARL-Papers: 多智能体(MARL)
    优质
    简介:MARL-Papers是多智能体强化学习领域的综合性资源库,汇集了相关研究论文与最新进展,为学术界和工业界的研究人员提供宝贵的参考资料。 多主体强化学习(MARL)论文集 多智能体强化学习是一个非常有趣的研究领域,它与单智能体RL、多智能体系统、博弈论、进化计算和优化理论有很强的联系。这是关于多智能体强化学习(MARL)研究和评论论文的一个集合,按时间排序。 欢迎任何建议和请求。这些参考文献的共享原则仅用于研究目的。如果有作者不希望在此处列出其论文,请随时与编者联系。 概述、教程及书籍 - Jakob N Foerster撰写的博士论文,《》,2018年。 - HM Schwartz著,2014年。 - Daan Bloembergen, Daniel Hennes, Michael Kaisers和Peter Vrancx撰写的文章,《》(ECML),2013年。 - Shoham Y与K. Leyton-Brown合著的《》,剑桥大学出版社,2008年。
  • 推荐系统
    优质
    本研究探讨了如何将强化学习应用于推荐系统中,通过优化用户与系统的互动过程来提高个性化推荐效果和用户体验。 推荐系统是现代互联网服务的重要组成部分,通过分析用户的行为、兴趣和偏好来提供个性化的内容或产品建议。近年来,随着深度学习技术的发展,推荐系统的精确度和效率得到了显著提升。本段落将探讨注意力机制与强化学习在推荐系统中的应用。 一、注意力机制的应用 借鉴人类视觉处理信息的方式,注意力机制能够突出显示关键信息并忽略不重要的细节,在推荐系统中帮助模型更有效地理解用户的兴趣及行为模式。例如,谷歌搜索引擎的眼球追踪实验揭示了用户浏览页面时的关注焦点,这启发在推荐模型中引入注意力机制,使模型能根据实时兴趣分配不同的权重,并提供更为精准的建议。 二、AFM:带注意力机制的因素分解机 Field-aware Factorization Machines(AFM)是Factorization Machine(FM)的一种扩展版本。它旨在解决所有特征交叉同等对待的问题,在推荐系统中引入了注意力机制,赋予不同域间的特征交叉不同的权重。这增强了模型识别重要特征的能力,并在处理如年龄、性别和购买历史等多元数据时提高了准确性。 三、DIN:带注意力机制的深度学习网络 Deep Interest Network(DIN)是另一种利用注意力机制的深度学习模型,在电商推荐场景中表现出色。该模型能够动态关注用户的历史行为,根据当前上下文调整权重以适应用户的即时兴趣需求。相比传统的基于静态画像的方法,DIN在捕捉瞬时需求方面更有效。 四、强化学习与推荐系统的结合 作为机器学习的一个分支,强化学习通过环境互动优化策略,在推荐系统中智能体(即推荐系统)会根据用户对内容的反应调整其建议方式。例如,Deep Q-Networks (DQN) 用于寻找最佳推荐序列,并使用经验回放缓冲区稳定学习过程以避免传统Q学习中的延迟问题。 进一步地,Deep Reinforcement Learning Networks (DRN) 在实时环境中持续更新模型应对快速变化的用户偏好和行为模式,采用竞争梯度下降算法等在线学习方法进行优化。 综上所述,注意力机制与强化学习技术结合为推荐系统带来了新的视角和改进策略。通过这些技术的应用不仅提升了系统的精准性,还促进了更智能、个性化的用户体验构建。
  • 基于神经.zip
    优质
    本研究探讨了结合神经网络与组合优化技术在强化学习中的应用,旨在提高算法效率及解决复杂问题的能力。 本段落探讨了强化学习在神经组合优化中的应用。通过利用强化学习技术,可以有效地解决复杂的优化问题,在多个领域展现出巨大的潜力和优势。文章详细介绍了如何结合这两种方法来提高算法的性能,并讨论了一些实际应用场景和技术挑战。希望通过这种交叉学科的研究方式,能够推动相关领域的进一步发展与创新。
  • 关于
    优质
    本文献深入探讨了强化学习领域的最新进展与挑战,涵盖理论分析、算法创新及实际应用,旨在为研究者和从业者提供全面指导。 本段落基于技术分析原则提出了一种人工智能模型,该模型采用自适应网络模糊推理系统(ANFIS)并结合强化学习(RL),用作非套利算法交易系统。这种新型智能交易系统能够识别主要趋势的变化以进行交易和投资决策。它利用RL框架动态确定动量和移动平均线的周期,并通过使用ANFIS-RL适时调整周期来解决预测延迟问题,以此作为判断何时买入(LONG)或卖出(SHORT)的最佳时间点的参考。当应用于一组股票时,可以形成一种“顺势而为”的简单形式。这些是基础股价波动中的特征提取方式,提供了一种基于周期进行交易的学习框架。初步实验结果令人鼓舞:首先,在误差和相关性方面,该模型优于DENFIS 和 RSPOP;其次,在为期13年的五只美国股票的测试交易中,所提出的交易系统比市场平均表现高出约50个百分点。
  • PPT总
    优质
    本PPT总结了强化学习的核心概念、算法框架及应用实例,旨在帮助学习者系统地理解并掌握强化学习的基本原理和实践技巧。 强化学习(RL),又称再励学习、评价学习或增强学习,是机器学习的一种范式和方法论,用于描述智能体在与环境交互过程中通过学习策略以实现回报最大化或达成特定目标的问题。
  • 必读深度
    优质
    这段文献综述精选了深度强化学习领域中最重要的研究论文和资源,旨在为初学者及资深研究者提供全面而深入的学习路径。适合所有希望深入了解该领域的读者阅读。 深度强化学习的入门经典文献包括DQN、DDPG、A3C/A2C/PPO/ACKTR等内容;此外还有模仿学习的相关研究,并且包含几篇综述性的文章。
  • 路径规划:A*算法与
    优质
    本文探讨了一种将A*算法与强化学习相结合的新方法,用于优化路径规划问题。通过这种混合策略,提高了导航系统的效率和适应性,在复杂的动态环境中表现出色。 “寻找路径” 在运行simple_RL_run.py之前: 1. 运行_Astar.py:使用AStar算法找到到达目标并避免障碍的最佳方法。 2. 运行_Testing.py:模拟Jetbot根据AStar解决方案的反应。 Simple_RL 运行simple_RL_run.py:构建一个简单的RL培训环境 改进措施包括: - 状态(States): 将3扩展为5,考虑目标的相对位置; - 奖励函数(reward function): 越接近目标,每个步骤可获得的奖励就越大。 - A*算法解决方案: 使用AStar方法“教”智能体进行一些有用的初始设置。 RL_Weibo文件夹 运行run_RL.py:使用Polytope进行RL强化训练。
  • 聚类:利用进行聚类
    优质
    本研究提出了一种基于强化学习的新颖聚类算法——增强聚合聚类,该方法能够有效提高数据聚类的质量和效率。通过智能探索与优化策略,系统地解决了传统聚类方法中参数难以调优、对初始条件敏感等问题。 为了克服传统聚类方法中的贪婪性问题,我们提出了一种基于强化学习的解决方案来改进凝聚聚类技术。这种方法通过将聚集聚类过程建模为马尔可夫决策过程(MDP)来进行优化,从而能够学习到更加非贪婪性的合并策略。 层次聚类通常采用一种“自下而上”的方法,在这种情况下每个观测值开始时都在单独的簇中,并随着层级上升逐渐进行合并操作。由于聚集聚类本质上是一个顺序决策问题——早期做出的选择会影响后期的结果,传统的链接标准无法通过简单地评估当前阶段集群间的相似度来解决问题。 因此,我们将聚类过程建模为马尔可夫决策过程(MDP),并利用强化学习技术对其进行求解。代理需要学会非贪婪的合并策略,以选择每个合并操作从而获得长期的优化奖励。具体来说,状态被定义为当前簇特征表示;动作则对应于将集群i和j进行合并。 我们采用Q学习算法来计算给定状态下执行特定行动的价值,并在训练阶段使用图像的真实标签作为反馈信号来评估代理行为的质量。而在测试过程中,则会尝试不同的数据集以验证该模型的有效性和泛化能力。
  • balance_car_rl_matlab__平衡小车_matlab_控制
    优质
    本资源提供了基于MATLAB的强化学习算法应用于平衡小车控制系统的设计与实现。通过模拟环境训练智能体掌握使小车保持稳定的策略,适合初学者和研究者深入理解强化学习原理及其在实际问题中的应用。 本项目旨在利用强化学习解决经典控制问题——平衡小车倒立摆。目标是通过调整小车的移动来保持摆杆垂直站立,这在实际物理系统中具有挑战性。 强化学习是一种机器学习方法,适用于处理连续且动态环境中的优化问题。其基本思想是智能体与环境互动以获取最优策略。在这个项目中,智能体为控制器,而环境包括小车和摆杆的物理特性。通过执行动作(如推动小车),智能体会接收到状态反馈,并根据当前情况得到奖励或惩罚。最终目标是在长期累积奖励最大化的基础上稳定地保持摆杆垂直。 提供的文件包含以下关键脚本: 1. `Cart_Pole.m`:主程序,可能包括环境模型、学习策略和训练过程的强化学习算法实现。 2. `Cart_Pole_Boxes.m`:用于模拟多个环境实例以进行并行训练或评估。 3. `get_box.m`:获取小车位置速度及摆杆角度角速度等状态信息。 4. `plot_Cart_Pole.m`:绘制系统动态图像,帮助可视化智能体表现和系统状态。 5. `plotcircle.m`:可能用于绘制理想垂直姿态下的圆表示摆杆。 6. `prob_push_right.m`:定义环境的推力概率分布等动态模型特性。 7. `Random_Pole_Cart.m`:生成随机初始条件,提供不同训练起始点。 在MATLAB中实现强化学习时,通常使用Q-learning、SARSA或更现代的方法如DQN(深度Q网络)和DDPG(深度确定性策略梯度)。这些方法能够从状态到动作的映射中学习并逐步优化智能体表现。 关键组成部分包括: - 状态空间:描述所有可能的状态组合,例如小车位置、速度及摆杆角度。 - 动作空间:包含所有可执行的操作,如向左或右推动小车。 - 奖励函数:定义在每个时间步给予的反馈机制,在保持直立时奖励正数,在倒下时惩罚负值。 - 策略:智能体选择动作的方式(确定性或随机)。 - 学习率与折扣因子:前者控制策略更新速度,后者影响对远期奖励考虑程度。 通过调整这些参数和算法,可以观察到智能体如何逐渐学会平衡小车。此外,理解并优化环境动态模型以及设计有效的奖励函数也是成功的关键因素之一。利用MATLAB强大的数值计算能力能够高效地模拟训练过程,并实现自动控制目标。