Advertisement

电力变压器铁心饱和磁场特性的测试(2012年)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文于2012年探讨了电力变压器铁心在不同条件下的饱和磁场特性,并提出了一种有效的测试方法。 对电力变压器铁心材料磁特性的测量与模拟具有重要的现实意义。通过使用叠片铁心模型进行实验,并利用WT3000功率分析仪采集数据,可以得到基本的磁化曲线,尤其是在饱和状态下的数据,此时的磁感应强度可达到2.058T。本段落详细介绍了具体的测量方案,并提供了计算变压器在饱和状态下损耗所需的有力依据。此外,这些测量结果还为铁心材料的模拟提供了实验基础,并对分析变压器过励磁问题具有重要的实用价值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2012
    优质
    本文于2012年探讨了电力变压器铁心在不同条件下的饱和磁场特性,并提出了一种有效的测试方法。 对电力变压器铁心材料磁特性的测量与模拟具有重要的现实意义。通过使用叠片铁心模型进行实验,并利用WT3000功率分析仪采集数据,可以得到基本的磁化曲线,尤其是在饱和状态下的数据,此时的磁感应强度可达到2.058T。本段落详细介绍了具体的测量方案,并提供了计算变压器在饱和状态下损耗所需的有力依据。此外,这些测量结果还为铁心材料的模拟提供了实验基础,并对分析变压器过励磁问题具有重要的实用价值。
  • 柱截面设计优化
    优质
    本研究探讨了电力变压器铁心柱截面设计的优化方法,旨在提高设备效率和降低能耗,通过仿真分析与实验验证提出改进方案。 本段落主要探讨电力变压器铁心柱截面的优化设计问题。通过研究确定了铁心柱截面的最佳级数、各级宽度和厚度的设计值。实验结果显示,采用最佳设计方案能够取得理想的效果。
  • Simulink仿真分析
    优质
    本研究采用Simulink工具对磁滞饱和变压器进行了详细的仿真与分析,旨在探讨其在不同工况下的工作特性及应用潜力。通过建立精确模型,深入理解磁滞效应和饱和现象的影响,为优化设计提供理论依据和技术支持。 磁滞饱和变压器的Simulink仿真模拟。
  • MATLAB/Simulink 系统中仿真——空载运行分析(含与励流)
    优质
    本教程深入探讨了使用MATLAB/Simulink进行电力系统中变压器空载运行仿真的方法,特别关注于磁通饱和效应及励磁电流的分析。 MATLAB Simulink 电力系统中的变压器仿真涉及变压器空载运行的模拟,包括磁通饱和和励磁电流的影响。
  • 流互感仿真
    优质
    本研究探讨了电流互感器在过载情况下的饱和特性,并通过计算机仿真技术分析其性能变化,为电力系统的安全运行提供理论依据。 使用MATLAB PSB模块库中的饱和变压器/互感器元件,其电流比为2000A/5A,额定容量为25VA。CT一次绕组为单匝,穿过环形铁心;二次绕组有400匝。一次绕组的电阻R1=0.O01标幺值(p.u),电感L1= 0.04p.U;二次绕组的电阻尺2=0.00lp.U,电感L2=0.04p.U;表示铁心有功损耗(涡流和磁滞损耗)的电阻R =100p.u。电流互感器铁心的非线性磁化特性用分段线表示,并考虑可能存在剩磁的情况。CT二次侧负载为一个1欧姆的电阻,且在二次侧串联了一个开关,在通常情况下该开关是闭合状态;当断开时则用于模拟二次侧开路时电流互感器的工作状况。
  • 外加应耦合及分布COMSOL仿真研究
    优质
    本研究利用COMSOL软件对磁流变弹性体在不同磁场强度与外部应力作用下的磁力耦合及分布特性进行数值模拟,旨在揭示其内部力学-磁学行为的复杂相互作用机制。 在现代科学技术领域里,磁流变弹性体作为一种智能材料因其独特的磁响应性能而备受关注。这种材料能够通过对外部磁场或应力的反应改变自身的力学性质,如刚度与阻尼能力等特性。 本次研究旨在探讨不同外部条件下(包括不同的磁场和外部应力)下,磁流变弹性体内磁力耦合及分布特性的变化规律,并利用专业仿真软件Comsol进行模拟实验。通过此方法进一步加深对材料行为的理解。 在本项研究中,重点分析了基底橡胶材料的机械性能如何随着外界环境条件(如磁场强度和方向)的变化而改变,这是理解磁流变弹性体在外加力场作用下具体表现的关键所在。仿真结果揭示了外部应力与内部磁场分布之间的相互影响,并且通过调整实验参数观察到材料内磁力耦合特性的动态变化。 研究中所使用的Comsol是一款强大的多物理场模拟工具,能够帮助研究人员在计算机上实现复杂电磁学和流变力学过程的精确建模。借助这一软件平台,可以预测出不同工况下磁流变弹性体的表现情况,并为材料的设计优化提供理论指导和技术支持。 本研究通过详细的仿真工作揭示了磁场与外部应力相互作用下的磁力耦合特性,从而为其在振动控制、减震器及智能结构等领域的应用提供了重要的科学依据。未来随着相关技术的发展,磁流变弹性体有望发挥出更多潜在的优势和价值。
  • 大型及涡流损耗计算
    优质
    本研究聚焦于大型电力变压器内部复杂的电磁场分布及其导致的能量损耗问题,特别是涡流损耗。通过深入分析和精确建模,旨在优化设计以提高效率与性能,为电力系统提供可靠的技术支持。 大型电力变压器的电磁场与涡流损耗计算是确保其运行效率及安全的关键技术之一。随着电力系统容量的增长以及变压器结构趋向紧凑化设计,磁漏现象日益严重,导致夹紧板、油箱壁等金属部件出现显著的涡流损耗问题。如果不加以控制,这些局部过热会威胁到设备的安全性。 为应对这一挑战,研究者们已探索了多种策略,包括使用低导磁率材料和电磁屏蔽技术来减少涡流效应的影响。本段落中,一个科研团队提出了一种基于计算机信息科学的方法评估电力变压器中的三维涡流场分布情况。这种方法满足了一系列物理方程,通过引入边界条件并求解加权残差方程式得到最终的磁场强度、电流密度及损耗值。 具体而言,该研究采用了时间谐波有限元法进行数值计算,在此过程中利用三角柱网格对整个区域进行了细致划分,并借助Team Problem 21-A模型验证了算法的有效性。实验结果表明,所提出的涡流场模拟技术能够准确预测实际测量到的磁场强度值。 此外,文章还展示了针对一台80,000kVA/220kV大型变压器使用时间谐波有限元法进行三维涡流场计算的具体步骤,并通过数值分析得出其内部金属结构件产生的损耗情况。这些数据为优化设计提供了宝贵的参考信息,有助于降低能耗并提升整体性能。 总而言之,精确的电磁场与涡流损耗评估能够有效预测和减少大型电力变压器工作过程中的能量损失问题,从而提高能源使用效率及设备的安全可靠性,在电力系统的规划、运营维护等方面发挥着重要作用。随着技术进步不断深入发展,此类研究也将继续拓展其应用范围并进一步完善相关理论体系。
  • 基于COMSOL--仿真模型研究
    优质
    本研究利用COMSOL软件建立并分析了变压器内部电、磁、力学多物理场耦合仿真模型,深入探讨其工作原理及优化设计方法。 在现代电力系统中,变压器作为关键设备之一,其性能直接影响整个电网的稳定运行。电磁力场仿真模型的研究是优化变压器设计与提升性能的重要手段。利用COMSOL软件进行仿真研究可以深入分析变压器工作状态下的电磁场分布情况及其对结构的影响。 COMSOL是一款功能强大的多物理场模拟工具,适用于各种频率范围内的物理过程模拟,特别适合于电磁场的分析。在变压器仿真的应用中,工程师能够借助它快速构建模型,并实现包括电磁、温度和流体等在内的多种物理场耦合仿真。通过建立精确的仿真模型,可以预测并评估变压器在不同工况下的性能表现,从而优化设计。 准确计算电磁力是电磁力场仿真中的关键问题之一。由于交变电流产生的磁场作用于铁芯、绕组及其他金属结构中时会产生涡流和应力效应,这些因素可能导致材料疲劳、噪声及振动等问题的发生。因此,在变压器的设计与评估过程中,精确模拟电磁力的分布至关重要。 在实际仿真实验中,需要构建详细包括铁心、线圈(绕组)、油箱以及冷却系统在内的几何模型,并设置正确的材料属性如磁导率和电阻率等参数,同时设定适当的边界条件及激励条件。通过调整这些参数来模拟不同工作状态下的情况,可以获取更为准确的电磁场分布与力场分布。 仿真模型构建是一个迭代优化的过程,在此过程中需要根据每次仿真的结果不断调整模型参数以确保其准确性,并且在保证精度的前提下考虑计算效率问题。 基于COMSOL软件开展变压器电磁力场的研究不仅能帮助设计人员提高设备的设计质量和性能,还能提前预测可能出现的问题从而降低试验成本和风险。此外,该仿真技术也为其他电力设备的电磁分析提供了借鉴参考。 总之,利用COMSOL进行变压器电磁力场仿真是现代电力系统中优化变压器设计与提升其稳定运行能力的重要方法之一,在电力电子领域具有重要的应用价值和技术意义。