Advertisement

正则化正交最小二乘法(ROLS)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
正则化正交最小二乘法(Regularized Orthogonal Least Squares, ROLS)是一种用于参数估计和模型选择的有效算法,尤其擅长处理过拟合问题。通过引入正则项,ROLS能够在保持模型预测能力的同时减少复杂度,适用于各种线性回归及非线性系统建模场景。 这是一种基于正则化的正交最小二乘法的RBF神经网络算法,可以解决回归问题和模式识别中的监督分类问题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • (ROLS)
    优质
    正则化正交最小二乘法(Regularized Orthogonal Least Squares, ROLS)是一种用于参数估计和模型选择的有效算法,尤其擅长处理过拟合问题。通过引入正则项,ROLS能够在保持模型预测能力的同时减少复杂度,适用于各种线性回归及非线性系统建模场景。 这是一种基于正则化的正交最小二乘法的RBF神经网络算法,可以解决回归问题和模式识别中的监督分类问题。
  • OLS的MATLAB代码:
    优质
    本段代码实现了正交最小二乘法(OLS)在MATLAB中的应用,适用于多项式拟合及模型参数估计等问题,提供高效准确的数据分析工具。 OLS(正交最小二乘法)的MATLAB代码可用于曲线拟合,并且包含详细的注释。
  • 带有的回归:基本的回归算规方程)-MATLAB开发
    优质
    本项目介绍了带正则化的回归最小二乘算法及其基础——最小二乘回归和正规方程,并提供了MATLAB实现代码。适合学习与应用统计学模型者参考。 可以用于曲线拟合。
  • 基于希尔伯特矩阵的吉洪诺夫检验:对比与普通-MATLAB实现
    优质
    本研究利用MATLAB针对希尔伯特矩阵探讨了吉洪诺夫正则化方法,比较其在处理病态问题时相较于传统最小二乘法的优势。 使用奇异值分解来计算涉及希尔伯特矩阵的线性方程组的正则化最小二乘(Tikhonov正则化)解与普通最小二乘解,并进行比较。由于希尔伯特矩阵本质上是病态系统,因此证明了微扰系统上正则化的稳定性。
  • OLS的Matlab代码.zip
    优质
    本资源提供了一套详细的OLS(正交最小二乘法)Matlab实现代码。适用于工程数据拟合和模式识别等领域研究者使用。 正交最小二乘法(OLS)的MATLAB代码在曲线拟合中有应用,并且包含详细的注释。
  • 改进的(AOLS)- MATLAB实现
    优质
    本研究介绍了改进的正交最小二乘算法(AOLS)及其在MATLAB环境下的实现方法。通过优化计算步骤和提高拟合精度,该算法能够更有效地处理数据建模问题。 通过加速正交最小二乘 (AOLS) 方法可以从线性和可能扰动的测量中恢复稀疏信号。 正交最小二乘法(OLS)是一种用于稀疏重建的贪心算法,类似于正交匹配追踪(OMP),但在处理相关字典时更为准确。然而,与 OMP 相比,OLS 的每次迭代成本更高。AOLS 算法在性能上接近于 OLS,但复杂度显著降低,并且可以作为 OMP 和 OLS 的替代方案。
  • 内点Matlab代码-L1-LS.py:L1问题的求解器
    优质
    L1-LS.py 是一个使用内点法解决 L1 正则化最小二乘问题的 MATLAB 代码,适用于需要稀疏解或处理噪声数据的各种应用场景。 内点法matlab代码l1-ls这是用Python编写的大规模L1正则化最小二乘(L1-LS)求解器。该代码基于提供的MATLAB代码。 安装: 您可以直接从源代码安装最新版本。 pip install git+https://github.com/musically-ut/l1-ls.py.git@master#egg=l1ls 也可使用此软件包。 pip install l1ls 用法: 该模块具有两个功能:l1ls(A,y,lmbda,x0=None,At=None,m=None,n=None,tar_gap=1e-3,quiet=False,eta=1e-3,pcgmaxi=5000),和,l1ls_nonneg(A,y,lmbda,x0=None,At=None,m=None,n=None,tar_gap=1e-3,quiet=False,eta=1e-3,pcgmaxi=5000) 它们可以按如下方式使用: import l1ls as L import numpy as np A = np.array([[1, 0, 0,
  • 采用多项式进行拟合
    优质
    本研究探讨了利用正交多项式实现数据的最小二乘拟合方法,旨在优化曲线拟合精度和计算效率,适用于科学数据分析与工程建模。 我上传的内容是利用正交多项式进行最小二乘拟合的资料,希望对大家有所帮助。
  • Tikhonov.zip_L曲线_Tikhonov_tikhonov_
    优质
    本资料探讨L曲线与Tikhonov正则化技术,深入分析其在求解不适定问题中的应用,提供理论解析和实例验证。 压缩包里包含了正则化方法、L曲线和奇异值分解等内容,希望能对大家有所帮助。
  • 数据拟合、及卡尔曼滤波加权方差拟合
    优质
    该研究探讨了数据拟合技术,包括最小二乘法、正交最小二乘法和卡尔曼滤波加权最小方差拟合方法,并分析它们在不同场景下的应用效果。 数据拟合包括最小二乘法、正交最小二乘法、卡尔曼滤波以及加权最小方差拟合等多种方法,这些技术均可以实现有效运行。