Advertisement

高性能全差分双环路电压控制振荡器设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本项目聚焦于一种新型高性能全差分双环路电压控制振荡器的设计与实现。该振荡器采用先进的电路架构,有效提升了相位噪声、频率调谐范围及功率效率等关键性能指标,在无线通信领域展现出广泛应用前景。 设计了一种基于SMIC0.18μm射频1P6M CMOS工艺的高性能全差分环形压控振荡器(ring-VCO),采用双环连接方式,并利用独立正反馈技术来提升性能。在电源电压为1.8V的情况下进行了电路仿真,结果显示:对于中心频率为500MHz的环形VCO,其调谐范围从341MHz到658MHz;增益误差Kvco为-278.8 MHz/V,在500MHz下的幅度噪声为-104dBc/Hz @ 1MHz,功耗为22mW。对于中心频率为2.5GHz的环形VCO,其调谐范围从2.27GHz到2.79GHz;增益误差Kvco为-514.6 MHz/V,在2.5GHz下的幅度噪声为-98dBc/Hz @ 1MHz,功耗为32mW。这种VCO适用于低压电路和高精度锁相环等应用场景。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目聚焦于一种新型高性能全差分双环路电压控制振荡器的设计与实现。该振荡器采用先进的电路架构,有效提升了相位噪声、频率调谐范围及功率效率等关键性能指标,在无线通信领域展现出广泛应用前景。 设计了一种基于SMIC0.18μm射频1P6M CMOS工艺的高性能全差分环形压控振荡器(ring-VCO),采用双环连接方式,并利用独立正反馈技术来提升性能。在电源电压为1.8V的情况下进行了电路仿真,结果显示:对于中心频率为500MHz的环形VCO,其调谐范围从341MHz到658MHz;增益误差Kvco为-278.8 MHz/V,在500MHz下的幅度噪声为-104dBc/Hz @ 1MHz,功耗为22mW。对于中心频率为2.5GHz的环形VCO,其调谐范围从2.27GHz到2.79GHz;增益误差Kvco为-514.6 MHz/V,在2.5GHz下的幅度噪声为-98dBc/Hz @ 1MHz,功耗为32mW。这种VCO适用于低压电路和高精度锁相环等应用场景。
  • 锁相(PLL)的基于(VCO)
    优质
    本设计聚焦于高性能锁相环(PLL)技术,核心在于优化压控振荡器(VCO),以实现高精度、低噪声和快速锁定时间的信号同步与频率合成。 锁相环(PLL)是现代通信系统中的基本构建模块。它通常用于无线电接收机或发射机中,主要提供本振功能;同时也可以用于时钟信号分配和降噪,并且越来越多地用作高采样速率模数转换的时钟源。
  • (VCO)
    优质
    电压控制振荡器(VCO)是一种能够通过改变输入电压来调整输出信号频率的电子元件,在通信系统、雷达技术及音乐合成等领域有广泛应用。 利用变容管的结电容Cj随反向偏置电压VT变化的特点(当VT=0V时,Cj达到最大值;一般情况下,变容管在2V至8V范围内工作,此时Cj呈线性变化;而在8-10V区间内则呈现非线性变化,在10-20V之间这种非线性变化更为明显),结合低噪声振荡电路的设计制作成振荡器。通过改变VT值可以实现不同的效果。
  • 基于西勒型LC
    优质
    本研究设计了一种新型电压控制型LC振荡器,采用西勒振荡电路作为核心结构,能够实现宽频带、高稳定性的正弦波信号输出。 基于西勒经典振荡电路设计并制作了LC振荡器。采用锁相环技术进行稳频,并利用AGC原理实现稳幅功能。该装置能够支持步进频率调节输出。
  • CMOS:具备输出精度和力(2008年)
    优质
    本文于2008年提出了一种高性能CMOS环形振荡器设计方案,该方案在保证电路简单性的同时,实现了卓越的频率稳定性和优异的电源电压抑制性能。 振荡器是许多电子系统的关键组件。与晶体振荡器相比,基于CMOS工艺的环形振荡器具有出色的抗震性和抗电磁干扰性能,在车载系统等震动及电磁环境较为恶劣的应用场景中表现出明显优势。本段落介绍了一种频率为8 MHz的CMOS环形振荡器的设计方案,其工作电压范围是2.7至5.5伏特,工作温度范围从-40℃到125℃。该设计针对CMOS环形振荡器固有的缺点进行了优化改进:通过采用改良后的延时单元和激光校准电路解决了输出频率在不同芯片间偏差较大的问题;使用内部电压源及与电源电压无关的电流源,克服了其受电源电压影响的问题。
  • LC
    优质
    本文章详细介绍了LC振荡器的工作原理及其电压控制机制,探讨了如何通过调整外部电压来改变其工作频率和稳定性。适合电子工程爱好者和技术人员阅读。 本设计主要包括锁相环频率合成器、幅度稳幅控制模块、可调幅度控制模块、高频功率放大器及单片机键盘显示处理等部分,实现了输出正弦波的频率在15MHz至100MHz范围内连续调节,步进为5KHz,稳定度达到10^-6;同时支持峰峰值从0.5V到8V之间连续调整,每级变化为10mV。当信号幅度保持在1V时,在单电源供电(电压:12V)条件下对30MHz固定频率进行功率放大处理,并能在纯电阻和容性负载上输出至少35mW的功率。 设计中采用的是通过改变施加于LC谐振回路上的电压来调整工作频率的电子振荡器,广泛应用于通信、雷达及测试设备等领域。本段落详细探讨了该类型的振荡器的设计原理、扩展频段的方法以及控制电压生成技术。 核心组件为由电感(L)和可变电容组成的LC谐振电路,在本设计中使用变容二极管作为调幅元件,其容量随施加的电压变化而改变。文中提出了三种设计方案,并最终选择了集成压控振荡器MC1648芯片,该器件提供优良的频率响应及稳定的输出波形。 为扩展频率范围,本段落介绍了两种方法:波段切换和混频技术。前者通过单片机控制继电器来选择不同的电感元件以覆盖从15MHz到100MHz的频段;后者则利用混频器将信号转换至所需频带内。考虑到电路复杂性和成本因素,文章选择了更为简单的波段切换方法。 锁相环(PLL)技术被用于产生控制电压。PLL是一种闭环控制系统,包括鉴相器、压控振荡器、分频器和滤波元件等部分。鉴相器比较输入参考信号与VCO输出的相位差,并生成误差信号以调整VCO的工作电压,从而确保两者频率同步。通过调节M/N值实现精细步进控制功能,在文中使用了MC145152作为PLL芯片。 总体设计涵盖了单片机AT89C52及可编程逻辑器件(如EPM7064、CPLD等),以及LC压控振荡器、锁相环频率合成单元和幅度调整模块。其中,锁相环路部分采用MC145152芯片实现从15MHz至100MHz的输出频谱覆盖,并且步进为5KHz;信号经过可调幅控制模块后能够支持峰值电压在0.5V到8V之间的连续变化和每级调整精度达10mV。最后,功放单元采用推挽电路结构,在纯电阻或容性负载条件下可以提供超过35mW的功率输出。 综上所述,该设计融合了电子振荡理论、频率合成技术以及锁相环原理等多项学科知识,并通过合理选择和配置各组件实现了具有高精度及宽频带特性的正弦波信号生成。在实际应用中(如无线通信设备、频率发生器等),这种设计方案具备重要的实用价值。
  • 优质
    环形振荡器是一种由偶数级反相器构成的简单时序电路,能够产生稳定的自由震荡信号,在电子工程领域有广泛的应用。 环形振荡器的工作原理是利用门电路的固有传输延迟时间将奇数个反相器首尾相连构成。由于该电路缺乏稳态,在静态条件下(即没有产生振荡的情况下),每个反相器的输入输出状态不能稳定在高电平或低电平,而是介于两者之间。 假设某一时刻v11产生了微小的正向变化,经过G1门的传输延迟时间tpd后,会在v12处形成一个幅度更大的负向脉冲。随后这个信号通过后续反相器(如G2)再次经历tpd的时间延迟,并在下一个节点产生更强烈的正向波动;当此过程进行到第三个反相器时,在输出端vo出现了一个更大振幅的负波形,同时反馈至首个门电路输入端v11。因此,经过3倍传输延时期间后,信号再次返回初始状态并重复上述变化序列。 如此循环往复,环形振荡器便能持续产生稳定的震荡波形。
  • LO子测量中的
    优质
    本论文探讨了电压控制LO振荡器的设计方法及其在电子测量技术中的应用,分析了其性能特点与优化方案。 电压控制LC振荡器主要由四个部分构成:压控LC振荡器电路、MC145152锁相环电路、精度达10^-5的温补晶体基准频率发生电路以及LM258组成的电压比较器电路,其原理图如图1所示。
  • Multisim成果
    优质
    本项目聚焦于使用Multisim软件进行压控振荡器的设计与优化,展示了从理论分析到实践验证的全过程,旨在提升电路性能和稳定性。 大二时期制作的项目作品。
  • 的课程
    优质
    《高频电子电路振荡器的课程设计》是一门专注于高频电子技术的教学项目,旨在通过实践操作和理论学习相结合的方式,使学生掌握振荡器的工作原理、设计方法及应用技巧。本课程涵盖了从基本概念到复杂应用的全面内容,帮助学员在通信工程领域打下坚实的基础。 本设计主要探讨模拟电子线路中的放大器工作原理、通信电子线路中高频功率放大器的工作原理以及振幅的普通调制和双边带调制原理。对电路基础、模拟电子线路及通信电子线路的相关基础知识要求较高,是对之前所学知识的一次全面复习。同时,该设计还将理论知识应用于实践中的设计与实现。